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Editorial

Despite various organizational issues, which delayed the date 
of publication by a few months, it has been a pleasure to edit 
Eureka.  It is a rewarding experience, not just for me, but 

also the entire editing team.

In July 2015, space probe New Horizons became the first spacecraft 
to fly by Pluto, with detailed measurements and observations made.  
This is a great discovery of our understanding to the Solar System.  
This resembles the meaning of ‘Eureka’ – ‘I have found it!’.  We pub-
lish this magazine with the spirit of exploration, hoping that this can 
be an inspiration of further discoveries.

We continue the usual practice of publishing mathematical articles 
in various fields, such as Bounded Gaps between Primes, Quantum 
Mechanics in the Sky and Puzzles, Prisoners and Probability, so that 
readers who are interested in any part of mathematics will find 
something interesting.

This year, the publication of Qarch, our problems journal, has been 
resumed. I would like to thank Leo Lai, the Qarch Editor, and his 
publication team, for their great effort in making Qarch another 
success.

It is my privilege to work with a wonderful editorial team, whom 
I would like to thank for all of their hard work. I would also like 
to thank former editor Jasper Bird and Yanitsa Pehova for their in-
valuable advice and tremendous support, as well as our writers, our 
sponsors, the Archimedeans, and our readers. Without you none of 
this would have been possible. Happy reading!
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Daochen Wang,  President 2014 − 2015
2014-15 has been a great year for the Archime-
deans, a year which marked 80 years since our 
society’s founding.

In a spirit of celebration, we started our year 
by co-hosting the inaugural Maxwell Lecture 
with the Cambridge University Physics Soci-
ety. The evening lecture, delivered by Profes-
sor Gerard t’Hooft on his recent proposal of 
a classical treatment of quantum laws, was 
enthusiastically received by a record-breaking 
audience of over 500. On the next morning 
was our Freshers Talk given by Professor Tim 
Gowers following which the society welcomed 
nearly 100 Freshers as new Life Members in 
the Small Examinations Room. No expenses 
were spared to ensure an abundance of pizza.
 
Going into Michaelmas term proper we host-
ed talks on a wide ranging variety of subjects. 
These went from mathematical biology to ge-
ometry to string theory. Personal highlights 
included “The Geometry of Speech” by Pro-
fessor John Ashton where we saw entire lan-
guages being converted into manifolds and 

“The Mystery of Spinors” by Professor Michael 

Atiyah who never ceases to amaze all of us 
with his ability to explain apparently compli-
cated concepts with so much clarity and ease.  

Our energy and momentum did not let go in 
Lent. Thanks to Leo Lai, the term began by our 
relaunching the dormant QARCH problems 
which asks, among other things, for a proof of 
a disguised Riemann Hypothesis. The major-
ity of the talks this term focused on combina-
torics and the most memorable moment must 
be during Professor Imre Leader’s tutorial on 

“Eating and Racing” when we the audience lit-
erally “laughed out loud” in response to the 
end of a proof using a method called strategy 
stealing.  As tradition dictates, we also hosted 
the Annual Problems Drive and the Annual 
Dinner towards the end of Lent. Both events 
were capably organised by Andrew Yiu.

It has been a great honour to be involved with 
the Archimedeans. I thank all of this year’s 
committee for their hard work and I am sure 
Andrew and his team for 2015-16 will do an 
even better job as we go into our 81st year.
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President
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Vice-President
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Corporate Officer
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Using Asymptotic 
Methods to 
Investigate the Noise 
Generated by 
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Aeroacoustics is a branch of fluid dynamics 
which studies the noise generated by flow inter-
actions with aerodynamic bodies. Arguably the 
most dominant studies focus on the noise gener-
ated by aeroengines, like those found on modern 
passenger aeroplanes, because, let's face it, they're 
pretty darn noisy! Aeroengines are complicated 
machines, with four key sources of noise, one 
of which is generated by the interaction of the 
blades within the engine with the air flow through 
the engine, and this is the noise discussed here.

The flow impinging on an initial layer of blades 
is assumed to be steady and uniform. The blades 
rotate and generate unsteady vorticity in the flow 
downstream, which goes on to interact with a sec-
ond layer of blades and this generates noise. We 
study this noise and hope to relate it to parame-
ters such as the blade geometry, the Mach number 
of the background steady flow, and the frequency 
of the unsteady vorticity, with the hope that this 
will allow us to find an optimal set of param-
eters that will reduce the overall unwanted noise, 
but not hinder the performance of the engine.

The noise of specific interest is that propagating 
away from the engine, because unless you're on-
board the aeroplane, you’ll only hear the noise 
from far away. A common approach to finding the 
noise is to ask a computer for help, however, be-
cause we want to compute the far-field noise, we 
need a very large computational domain. Further 
complications arise because high frequency noise 
is a key contributor. To retain accuracy as the fre-
quency is increased, the grid resolution must also 
be increased. Overall this results in codes which 
have long runtimes, or lose accuracy at high fre-
quencies. Analysing the effects of altering, for ex-
ample, the blade geometry, would therefore take 
a very long time (assuming your code is accu-
rate), and moreover would only illustrate a trend 
in behaviour as you alter the geometry, rather 
than yield a functional relationship between the 
noise generated and the geometry of the blades.

We therefore analytically model the far-field noise 
generated by so-called “blade-blade” interactions 
to obtain an asymptotic solution which depends 
on all the parameters of the problem. The solution 
allows us to quickly and efficiently discover the 
effects of altering any parameter on the far-field 
noise. Thankfully, a differential equation describ-
ing the interaction of unsteady vorticity with a 
thin aerofoil already exists [2], although it’s not 
particularly pleasant:

∂2h
∂φ2 +

∂2h
∂ψ2 + k2w2

(1− 2β2
∞
ǫq)h

+
(γ+1)M4

∞
ǫq

β2
∞

(
∂2h
∂ψ2 + 2ikδ ∂h

∂φ
+ k2(w2

+ δ2)h)

−
(γ+1)M4

∞

β2
∞

ǫ ∂q
∂φ

(
∂h
∂φ

− ikδh) = ǫSeiΩ

The coordinates, (ϕ, ψ), are defined as the ve-
locity potential and the streamfunction of the 
background steady flow around the aerofoil 
(so that the solid aerofoil surface is defined as 
ψ = 0 , φ ∈ [0, φe] , on which a zero nor-
mal flow boundary condition is imposed), 
and the function h describes the sound gener-
ated by the interaction. There are various con-
stants, M, β∞, γ, w, δ, which allow us to con-
sider different background flow conditions.

The constant, ǫ ≪ 1, measures the relative size 
of the aerofoil thickness and camber to its length, 
whilst the constant, k ≫ 1, is the (reduced) fre-
quency of the incident vortical disturbance. The 
function q(ϕ, ψ) depends on the exact geometry 
of the aerofoil, including effects of thickness, 
camber and angle of attack to the background 
steady flow. The source terms, S(ϕ, ψ) and  
Ω(ϕ, ψ), describe the vortical disturbance.

Figure 1: The model “blade-blade” interaction 
problem; rotating rotors create unsteady wakes in 
the steady background flow which interact with 
the stationary stators.
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If the aerofoil is reduced to a flat plate(ǫ = 0)

we have only the Helmholtz equation to solve, 
however for any realistic geometry, all terms 
contribute. To analytically solve the equation 
we make use of the large and small parameters, 
k and , to construct an asymptotic solution, 

h = h0(φ, ψ) + ǫ
√

kh1(φ, ψ) +O(ǫ, k−1
)  

where  ǫ, k−1
≪ ǫ

√

k ≪ 1. This process is illus-
trated by the following example.

Example

Consider the differential equation	
ǫy′′(x) + (1 + 2ǫ)y′(x) + 2y(x) = 0

with boundary conditions, y(0) = 0  and 
y(1) = 1, where ǫ ≪ 1. If x = O(1), then 
y
′′
(x), y

′
(x) = O(y), and the largest terms 

in the equation are y’ and 2y which we suppose 
to be O(1) because of the boundary condition
y(1) = 1. If x = O(ǫ), theny′′(x) = O(ǫ−2y) 
and the largest terms in the equation are y’’(x) and 
y’(x) both of which are O(ε-1y). We see that for dif-
ferent scalings of x we obtain different dominant 
terms in the differential equation. To solve this 
we therefore construct two solutions, one which 
is valid for x = O(1) and one when x = O(ǫ).

For x = O(1), we propose a solution
y = y0(x) + y1(x) +O(ǫ2)  

Substituting this into the equation and equating 
O(1) terms gives y′

0
(x) + 2y0(x) = 0 , and the 

boundary condition is y0(1) = 1. The solution is 
y0 = e

2(1−x) .   Considering the O(ε) terms, we 
require	 y

′

1
(x) + 2y1(x) = −y

′′

0
(x)− 2y

′

0
(x) ,

with boundary condition y1(1) = 0 (since 
y(1) = 1 is satisfied at first order with y0). This 
gives solution y1 = 0, soy(x) ≈ e2(1−x)

+O(ǫ2)
	

Figure 2: Comparisson of the approximate solu-
tions, y and Y , against the actual solution.

The constants A and B are unknown constants of 
integration; one arises from the second order dif-
ferential equation for Y0 and one for Y1.

To determine these constants and finish the
solution we use the principle of matched asymp-
totic expansions [3], which essentially says that
as X becomes very large in Y , we must have the
same solution as when x becomes very small in 
y. I.e. as we break out of the x = O(ε) region from 
the Y solution by making X large, we should get 
the same answer as when we break into the region 
from the other side by taking x to be small in the 
y solution.

For small x,

	 y(x) ≈ e
2
(1− 2x+O(x

2
)) ,

and for large X,
	

Y (X) ≈ A− 2AǫX + ǫB +O(ǫ2)

For x = O(ε), we change variables, y → Y , and 
x → X = x/ǫ. The equation becomes	
Y ′′

(X) + (1 + 2ǫ)Y ′
(X) + 2ǫY (X) = 0 ,

with boundary condition Y(0) = 0. We suppose 
Y (X) = Y0(X) + ǫY1(X) +O(ǫ2), and solve for 
Y0,1 similarly, giving
Y (X) ≈ A(1− e−X

) + ǫ[B(1− e−X
)− 2AX]

Substituting X = x/ε into this second expansion
and equating the coefficients of x and ε gives A = 
e2 and B = 0. This completes the solution for Y(X).

Figure 2 shows the two solutions, y and
Y, plotted against the actual solution to the
original differential equation, when ε = 0.05.
We see that the approximations give very good 
agreement to the actual solution except in a
small region near to x = ε. As long as we are
only interested in the solution away from this
erroneous region, we could use our ap-
proximation rather than the actual solution.
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For the aeroacoustic question, we are only inter-
ested in the solution far away from the aerofoil. 
We obtain that solution by using the principle of 
matched asymptotic expansions for all of the re-
gions illustrated in Figure 3. An example solution 
is plotted in Figure 4, which shows a polar plot of 
the magnitude of the far-field acoustic pressure as 
a function of observer angle. The aerofoil is locat-
ed at the origin. We see a decrease in noise gener-
ated upstream (the left half plane) as we increase 
thickness, but altering
thickness has much less of an effect downstream
(the right half plane). The aerofoils used in Figure 
4 have a small amount of camber, which results in 
the asymmetric plot - the noise generated above 
the aerofoil is not the same as that below, and we 
can see that at certain angles below the aerofoil 
(LHP) the zero thickness aerofoil generates less 
noise than those with thickness, however above 
the aerofoil, the noise decreases with thickness.

Further details of the method and solution
to the aerofoil noise generation problem can be
found in [1].

References

[1] Ayton, L. J. & Peake, N. On high-frequency
noise scattering by aerofoils in flow. Journal of
Fluid Mechanics 734, 144–182, 2013.
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effects in compressible rapid distortion
theory. AIAA Journal 25, 504–507.

[3] Van Dyke, M. 1975 Perturbation methods in
fluid mechanics . Parabolic Press.

Figure 3: Asymptotic regions around an aerofoil required to obtain the far-field, “outer”, solution.
The coordinates in the inner regions (i) and (iv) scale as O(k-1), in the transition regions (iii) and
(v) scale as O(k-1/2) and in the outer region (ii) scale as O(1).

Figure 4: Far-field acoustic pressure magnitude 
generated by a vortical interaction in steady flow
with a cambered NACA 4-digit aerofoil, for vary-
ing observer angle, θ. The legend denotes the per-
centage thickness of the aerofoil compared to its 
length.
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Dr. Daniel Baumann
Reader in Theoretical Physics, DAMTP

Quantum Mechanics 
in the Sky

Imagine you look at the night sky. You ran-
domly select a patch of the sky only a fraction
of the size of the full moon. To the naked eye it 

will look pitch black. This doesn't mean that
there is no light coming from that region. It just 
means that less than seven photons per second
are entering your eyes, in which case your brain 
cannot form an image. A camera, however,
can collect photons over a long period of time. 
This is what the camera on the Hubble Space
Telescope (HST) has done. Instead of looking for 
just an instant, the HST collected light for
more than 12 days. The result is one of the most 
stunning astronomical images ever produced:
see fig. 1. Every object in this picture is an entire 
galaxy! We see a few thousand of them, each
containing billions of stars. This becomes even 
more remarkable if we remember that this tiny
patch of the sky was selected at random. Any oth-
er randomly selected region in the sky would
look essentially the same. From this we can esti-
mate that the observable universe contains some
trillion galaxies and a few billion trillion stars. In 
this essay, I will describe our best answer to
the question: Where did it all come from?

The Cosmic Microwave     
Background
Let us start 380,000 years after the Big Bang. The 
universe had just cooled enough for the first
atoms to form. From this moment on, light was 
able to propagate freely. Today, 13.8 billion years
later, we observe this afterglow of the Big Bang as 
the cosmic microwave background (CMB).
The fact that the intensity of the CMB varies 
across the sky (see fig. 2) means that the matter 
in the early universe wasn't distributed uniformly. 
Over time, and under the influence of gravity,
these matter fluctuations grew. Regions of space 

Figure 1: The Hubble Ultra Deep Field. The image 
contains thousands of galaxies in an area that is

only a fraction of the size of the moon.

that contained more than an average amount of
matter, accreted matter from their surroundings 
and therefore got denser. Eventually, the local
density became high enough for galaxies, stars 
and planets to form. This part of the story is
well-understood; what needs explaining is where 
the small seed fluctuations came from.
On closer inspection, we realise that there is a 
problem with the map shown in fig. 2. The
fluctuations in the map aren't just noise, but dis-
play non-random correlations across large re-
gions of the sky. On the other hand, the universe 
was very young when the CMB was created. Even
signals travelling at the speed of light wouldn't 
have gotten very far. In particular, regions sepa-
rated by more than the size of the white circles 
in fig. 2 didn't have enough time to communicate
with each other. We say that they were out of caus-
al contact when the background radiation
was created. Having anything but random noise 
over large patches of the sky therefore seems to
violate causality. 
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The Causality Problem
It was this causality problem that Alan Guth was 
thinking about in the night of December 6, 1979. 
Guth is now a professor at MIT, but at the time 
he was a researcher at the Stanford Linear Ac-
celerator Centre, struggling to find a permanent 
job. Having been trained in particle physics, Guth 
knew very little about cosmology. However, a year 
earlier he had learned about the conceptual prob-
lems of the standard Big Bang theory from a talk 
by Robert Dicke. In the night of December 6th, 
he was led to thinking about it again. What hap-
pened next has become history.

In a flash of insight, Guth understood that the 
problems of the standard cosmology would be 
resolved if the early universe went through a brief 
period of superluminal expansion. He imagined 
that, for a fraction of a second, space expanded 
nearly exponentially.

Points that were initially very close to each other 
got stretched apart at an enormous rate, faster 
than the speed of light. According to the theory 
of cosmic inflation, everything we see in the sky 
today was initially compressed into a tiny, caus-
ally-connected, region of space. Faster-than-light 
expansion of space then blows up such a micro-
scopic region to enormous size and gives the illu-
sion of a causality problem. In reality, the causal-
ity problem would just be an artefact of assuming 
that the expansion of space never exceeded the 
speed of light.

Although inflation solves the causality problem, 
for explaining the origin of structure it seems to 
be a disaster. Any seed fluctuations that might 
have existed before inflation are spread apart at 
such an enormous rate that nothing survives af-
ter inflation. Inflation seems to make the universe 
empty and featureless. This is clearly not the uni-
verse we live in. Fortunately, quantum mechanics 
comes to the rescue.

QM to the rescue!
In quantum mechanics, empty space is never 
completely empty, as this would violate the 
Heisenberg uncertainty principle. Instead, even 
the vacuum needs to fluctuate: energy and parti-
cles can appear and disappear spontaneously (see 
fig. 3). These quantum vacuum fluctuations have 
many important consequences for physics. Some-
times, they have observable effects like the Lamb 
shift and the Casimir force. The Lamb shift refers 
to a shift in the energy levels of hydrogen atoms, 
as the electrons in the atoms interact with the 
quantum vacuum. This effect was measured by 
Willis Lamb in 1947. Shortly after, Hans Bethe cal-
culated the Lamb shift by showing how the fluc-
tuations in the vacuum disturb the electron while 
it is revolving around the proton. Besides these 
observable effects, vacuum fluctuations are also 
crucial for the theoretical consistency of modern 
physics. Quantum field theory and the Standard 
Model of particle physics would make no sense 
without quantum vacuum fluctuations. 

A
B

Figure 2: Temperature variations in the cosmic microwave background as observed by the 
Planck satellite. Red (blue) spots are hotter (colder) than the average temperature, reflecting 
density variations in the primordial plasma. The white circles indicate the maximal size of re-
gions that could have exchanged signals before the time that the CMB was created (accord-
ing to the standard Big Bang theory). The points A and B naively were out of causal contact.
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There is therefore no doubt that quantum vacuum 
fluctuations really exist.

Under ordinary circumstances, vacuum fluctua-
tions have tiny effects. However, during inflation 
they become dramatically important. Because of 
random quantum fluctuations, the inflationary 
energy density in some parts of the universe was 
slightly higher than average. In these regions, in-
flation lasted a bit longer, while in other regions 
inflation terminated earlier. This difference in the 
evolution amplies the fluctuations, resulting in 
signicant density fluctuations after inflation.
The exponential expansion of space during infla-
tion stretches the vacuum fluctuations to enor-
mous scales. Small-scale correlations in the quan-
tum vacuum can therefore leave imprints in the 
large-scale density fluctuations. Moreover, the 
combination of inflation and quantum mechan-
ics doesn't just make the apparently acausal cor-
relations in the CMB possible, it also predicts the 
specific form that these correlations should take. 
Roughly speaking, inflation predicts the probabil-
ity P(θ) that two points in the sky separated by an 
angle θ are both hotter (or colder) than average. 
The function P(θ) is expected to have a character-
istic shape, i.e. the amount of correlation varies in 
a specic way as a function of angular separation. 
Amazingly, in recent years, it has become possible 
to measure the fluctuations in the CMB accurately 
enough to determine the function P(θ) and com-
pare it to the prediction from inflation. The stun-
ning result is shown in fig. 4.

What next?
So, are we done? Do we understand everything? 

Figure 3: Quantum fluctuations in quantum chromo-
dynamics (QCD). The energy density associated with the 

gluon fields fluctuates spontaneously.

Far from it. While fig. 4 is compelling evidence for 
inflation, it doesn't yet exclude alternative expla-
nations for the origin of structure.
Moreover, the physics of inflation remains myste-
rious. We still don't know what caused the burst 
of inflationary expansion. In fact, the require-
ments for successful inflation are rather dramatic.
The expansion has to be superluminal and must 
increase the size of the universe by more than a 
factor of 1026 in just 10-33 seconds! This can hap-
pen in General Relativity if the universe is filled 
with a source of negative pressure. However, or-
dinary matter doesn't behave in this way, so it is 
likely that inflation requires more exotic physics. 
We hope that future observations will us hints 
for what this physics might be. In the meantime, 
theorists like myself are working hard to discover 
mechanisms that could explain the inflationary 
epoch or find alternatives. At stake is nothing less 
than a complete understanding of the origin of all 
structure in the universe!

Figure 4: Comparison of the latest measurements of the fluctuations in the CMB (bluepoints) with the
prediction from inflation (red curve).
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Introduction: 

A right angled triangle with sides as positive inte-
gers is also known as Pythagorean triangle.   We 
will denote the length of the small side by s, the 
length of the large side by l and the hypotenuse 
length by h of a Pythagorean triangle.   As is well 
known (Pythagoras Theorem),[1].

s
2 + l

2 = h
2 (1)

Instead of working with Pythagorean triangles 
geometrically or working with equations like (1), 
it is more convenient to work with triples (s, l, h), 
known as Pythagorean triples.

It is well known that by using Euclid’s formula 
(stated below) one can generate infinite num-
ber of Pythagorean triples (but not all of them).  
However generating sequences of Pythagorean 
triples help exhibit interesting relations within 
and among triples besides (hopefully) raising 
mathematical curiosity for the reader in establish-
ing links between sequences of triples with  other 
well known mathematical structures as shown in 
O’ Shea [1] and [2].

To refresh reader’s memory, we state Euclid’s For-
mula:  For any two positive integers m and n, with 
m > n, a Pythagorean triple is formed by 2mn, 
m2 − n2, m2 + n2.   Obviously m2 + n2 represents 
the hypotenuse length, the large (small) side is 
represented by larger (smaller) of the remaining 
two terms.

O’Shea’s presentation is restricted to one sequence 
of Pythagorean triples, namely (3, 4, 5), (5, 12, 13), 
(7, 24, 25), (9, 40, 41), (11, 60, 61), (13, 84, 85), … 
and each triple in the sequence is such that 
h − l = 1.

In our derivations we also restrict to one sequence 
of Pythagorean triples, generated in four different 
ways using Lucas sequence.   In our sequence of 
Pythagorean triples h − l increases  as components  
of  triples increase in magnitude.

Lucas sequence is specified by letting L1 = 1, L2 
= 3, and Ln = Ln−1 + Ln−2 for n = 3, 4, 5, ... In the 
lengthy form it is: 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 
199, 322, 521, …
Sometimes we will use symbols L1, L2, L3, L4, ... 
and identify the above string of numbers, also 

known as Lucas numbers, with symbols

Observation 1:  Using any subsequence of nat-
ural numbers (not just Lucas sequence) and con-
structing fractions of the form of  (c/d + d/c)/2 or 
(c/d − d/c)/2 with c and d positive integers and 
c > d to generate a sequence of Pythagorean tri-
ples will always end up with components of triples 
satisfying the Eulicd’s formula.  An illustration of 
this observation is in Section (A) below.

Generating a Sequence of Pythagorean Tri-
ples in Different Ways. 

Section (A): Select subsequences of size two us-
ing Lucas sequence, starting with number 3 as fol-
lows.  So we have 3, 4;  4, 7;  7, 11;  11, 18; and so 
on.  Then using each subsequence, construct frac-
tions [4/3 + 3/4]/2; [7/4 + 4/7]/2; [11/7 + 7/11] 
/2 and so on  After simplifying each product of 
fractions into a form a/b,
(i)   The numerator is the hypotenuse length.  (ii)  
The denominator is the large leg length.
(iii) the small leg length is computed as follows: 
suppose the sum of two fractions within 
the brackets is c/d + d/c with c > d.  Then the small 
leg length is given by (c2 − d2)

[4/3 + 3/4]/2 = 25/24 → (42−32, 24, 25) → (7, 24, 25)

[7/4+4/7]/2 = 65/56 → (72−42, 56, 65) →(33, 56, 65)

[11/7 + 7/11]/2   =  170/154   
→    (112 − 72, 154, 170)    →  (72, 154, 170)

[18/11 + 11/18]*(1/2) =  445/396   
→    (182 −112, 396, 445)  →  (203, 396, 445)

Note that in each of the above four triples, 
h = l + (c − d)2 

The nth term, for n =  1, 2, 3,. . . is given by
[Ln+2/Ln+1+Ln+1/Ln+2]/2 = [(Ln+2)2 + (Ln+1)2] / [2Ln+1 
Ln+2]   →  ((Ln+2)2 − (Ln+1)2, 2Ln+1Ln+2, (Ln+2)2 + 
(Ln+1)2)

We see that the nth triple turns out to be the same 
as given by the Euclid’s formula. 
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The reader may easily verify that the nth triple 
also satisfy the condition that  h = l + (Ln+2 - Ln+1)2.

Section (B):  Select subsequences of size three 
from the Lucas sequence, starting with number 1 
as follows.  So we have: 1, 3, 4;  3, 4, 7;  4, 7, 11;  7, 
11, 18; and so on.  Then do the following with each 
subsequence:
(i)  Multiply the first number by the sum of the 
middle and the last number.  This gives the length 
of the small leg. (ii)  Double the product of the 
middle number with the last number.  This  gives 
the length of the large leg.  (iii)  The hypotenuse 
length is the large leg length plus the square of the 
first term of the subsequence. 

1, 3, 4 →1×(3+4), 2×(3×4), 2×(3×4)+12→ (7, 24, 
25)

3, 4, 7 → 3×(4+7), 2×(4×7), 2×(4×7)+32 
→ (33, 56, 65)

4, 7, 11 → 4×(7+11), 2×(7×11), 2×(7×11)+42 
→ (72, 154, 170)

7, 11, 18  →  7×(11+18), 2×(11×18), 2×(11×18)+ 
72 →  (203, 396, 445) and so on 

The nth term, for n = 1, 2, 3,  … is given by 
Ln, Ln+1, Ln+2 → (Ln (Ln+1+Ln+2), 2Ln+1Ln+2,
2Ln+1Ln+2+Ln

2)
     
Now by definition of Lucas sequence,  Ln+2 = Ln+1 
+ Ln  or  Ln =  Ln+2 − Ln+1. So we may write the nth 
triple as
 
Ln, Ln+1, Ln+2 
→ ((Ln+2−Ln+1)(Ln+2+Ln+1), 2Ln+2Ln+1, 2Ln+2Ln+1 + 
(Ln+2−Ln+1)2)
→ (Ln+2 2− Ln+1

2, 2Ln+2Ln+1,  Ln+2
2 + Ln+1

2)

Section (C): Select subsequences of size three, 
skipping every third number in the Lucas se-
quence as follows.  So we have 1, 3, 7; 3, 4, 11;  4. 7, 
18;  7, 11, 29; and so on   Next do the following for 
each subsequence: 

(i)  Multiply the first and the last numbers. This 
gives the length of the small leg.
(ii) Multiply the middle number by the sum of 
first and the last numbers. This gives the length 
of large leg. 

(iii) The square of the first number in each subse-
quence plus the large leg length is the hypotenuse 
length.

1, 3, 7    →  1 × 7, 3 × (1 + 7) , 3 × (1 + 7) + 12      
→  (7, 24, 25)

3, 4, 11  →  3 × 11, 4 × (3 + 11), 4 × (3 + 11) + 32 

→   (33, 56, 65)

4, 7, 18  →  4 × 18, 7 × (4 + 18), 7 × (4 + 18) + 42 
→   (72, 154, 170)

7, 11, 29  →  7 × 29, 11 × (7 + 29), 11 × (7 + 29) + 
72  →   (203, 396, 445)  and so on 

The nth term, for n = 1, 2, 3, …, is given by 
Ln, Ln+1, Ln+3 
→ (LnLn+3, Ln+1(Ln + Ln +3), Ln+1(Ln+Ln +3)+Ln

2)      
(2)                 

Recall that by definition of Lucas sequence,  Ln= 
Ln+2  − Ln+1  and  Ln+3 =  Ln+2  + Ln+1 .   Replacing Ln 
and Ln+3 in the Pythagorean triple in (2), we have 

Ln, Ln+1, Ln +3 
→ ((Ln+2 − Ln+1)(Ln+2 + Ln+1), Ln+1 (Ln+2 − Ln+1 + Ln+2  
+ Ln+1), Ln+1 (Ln+2 − Ln+1 + Ln+2  + Ln+1) + (Ln+2 − 
Ln+1)2)
→ (Ln+2

2 − Ln+1
2,  2Ln+1Ln+2,   Ln+2

2 + Ln+1
2). 

Section (D): Select subsequences of four con-
secutive Lucas numbers starting with 1 as shown 
below and perform the following operations with 
each subsequence:

(i)   Multiply the end numbers of each subse-
quence.  This gives the small leg length.
(ii)  Double the product of two middle numbers.  
This is the large leg length.
(iii) The hypotenuse length is the large leg length 
plus square of the first number in each subse-
quence.

1, 3, 4, 7     →      1 × 7, 2 (3 × 4),  2 (3 × 4) + 12            
→    (7, 24, 25)

3, 4, 7, 11       →  3 × 11, 2 (4 × 7),  2 (4 × 7) + 32          
→    (33, 56, 65)

4, 7, 11, 18     →  4 × 18, 2 (7 × 11),  2 (7 × 11) + 42      

→   (72, 154, 170)

13



7, 11, 18, 29   →  7 × 29, 2 (11 × 18),  2 (11 × 18) + 
72  →  (203, 396, 445)

The nth term, for n =  1, 2, 3,. . . is given by
Ln,Ln+1,Ln+2,Ln+3→(LnLn+3,2Ln+1Ln+2,2Ln+1Ln+2+Ln

2) 
(3)     	 Since Ln+3=  Ln+2 + Ln+1 and Ln =  Ln+2 
− Ln+1 , the triple in (3) reduces to Ln , Ln+1, Ln+2, 
Ln+3  → 
(Ln+2

2−Ln+1
2, 2Ln+1Ln+2, Ln+2

2+Ln+1
2), as shown 

above.

Observation 2:  We note an interesting happen-
ing in the generated sequence of Pythagorean tri-
ples.  The sum of the lengths of the three sides of 
each Pythagorean triangle is equal to the length 
of the large leg of the next triangle.  For instance 
7 + 24 + 25 = 56, 33 + 56 + 65 = 154 and so on.  
This is true in general, as we show below.   Sum of 
the three sides of the nth Pythagorean triangle is

LnLn+3 + 2Ln+1Ln+2 +2Ln+1Ln+2+Ln
2

= Ln+2
2 − Ln+1

2 + 2Ln+1Ln+2 + Ln+2
2 + Ln+1

2 , 

as shown above,

= 2Ln+2
2 +  2Ln+1Ln+2  = 2Ln+2(Ln+2+Ln+1)

The (n+1)th triple is (Ln+1Ln+4, 2Ln+2Ln+3, 
2Ln+2Ln+3+ Ln+1

2 )
The large leg length in the (n+1)th triple is 2Ln+2Ln+3 
= 2Ln+2(Ln+2+Ln+1) 

Observation 3:  Another interesting situation is 
the following.  Let (sn, ln, hn) be the  nth Pythagore-
an triple in the generated Pythagorean sequence 
of triples.  We note that 

2s1 + 10 = 2(7) + 10 = 24 = l1, 
2s2 − 10 = 2(33) − 10 = 56 = l2, 

2s3 + 10 = 2(72) + 10 = 154 = l3 , 
2s4 − 10 = 2(203) − 10= 396 = l4 and so on.  
In general one may conjecture, that in the nth tri-
ple, 2sn ± 10 = ln  where one adds 10 if n is odd and 
subtract 10 if n is even. The conjecture is correct. 
A proof may be outlined as follows:  One needs to 
show that 2(Ln +2

2 − Ln +1
2) ± 10 = 2Ln +1Ln +2 which 

is equivalent to (using some basic Lucas sequence 
identities) showing that Ln +1(Ln +1 − Ln) − Ln

2 = 5 
which can be shown to hold using mathematical 
induction.   

So the components of triples of the generated Py-
thagorean sequence are interestingly tied together 
in more than one way as pointed out in Observa-
tions 2 and 3.

Observation 4: As seen in the first four triples 
of the generated Pythagorean sequence of triples, 
each hypotenuse length is a multiple of 5.  This 
is no surprise since it is given by Ln +2

2 + Ln+1
2 for 

n = 1, 2, 3, . . . and the sum of squares of any two 
consecutive numbers of the Lucas sequence is a 
multiple of 5.  
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In May 2013, Yitang Zhang stunned the math-
ematical world by proving the following result, 
which we shall loosely refer to as ‘‘bounded gaps
between primes”.

Theorem 1 (Zhang)
There is an absolute constant H such that there are 
innitely many pairs of distinct primes diering by 
at most H. 

The celebrated twin prime conjecture asserts 
that one may take H = 2. Zhang obtained H = 
70000000, but subsequent feverish activity by a 
massively collaborative Polymath project reduced 
this to 4680. In late 2013, James Maynard and 
Terry Tao found a much simpler proof of Zhang’s 
result giving H = 600, and a further Polymath pro-
ject based on this work has, at the time of writing, 
reduced H to 246.

Something I wish to emphasise in this article is 
that Zhang’s result should be thought of as the 
culmination of ideas about prime numbers devel-
oped by many of the great analytic number theo-
rists of the 20th century. It melds two important 
bodies of work:

1. Ideas of Goldston, Pintz and Yldrm, building 
on work of Selberg and others, establishing a link 
between the distribution of primes in arithmetic 
progressions and small gaps between primes;

2. Ideas of Bombieri, Fouvry, Friedlander and 
Iwaniec, building on but going well beyond work 
of Bombieri-Vinogradov, pinning down strong 
results about how primes are distributed in arith-
metic progressions.

Primes in progressions

The distribution of primes in progressions is cen-
tral to the whole story, so let us begin with a brief 
tour of that subject. We begin by recalling the 
prime number theorem, which states thatπ(X),  
the number of primes less than or equal to X, is 
roughly X/ logX . The fact that log X → ∞ , 
which means the primes have density tending to 
zero, of course explains why Zhang’s theorem is 
not at all obvious: the average gap between primes 
less than X is about log X. One might also remark 
that Zhang’s theorem is not at all surprising, either, 
since a random set of X/ logX  integers less than
X will, for X large, have many pairs spaced by at 
most 2. In fact, it will have many pairs spaced 

by at most 1, something not true for the primes 
themselves of course - to model the primes by a 
random set one has to be more careful and take 
account, for example, of the fact that most primes 
are odd.  It is convenient to state the prime num-
ber theorem a little dierently by introducing the 
von Mangoldt function �Λ(n), which is basically 
defined to equal log n if n is a prime1. Then the 
prime number theorem is equivalent to saying 
that ∑

x≤X

Λ(x) ≈ X

How many primes x satisfy some additional con-
gruence condition x ≡ c (mod d) ? Clearly 
(apart from for very small primes x≤d) we must 
have c coprime to d, but there is no obvious addi-
tional restriction. In fact, one expects the primes 
to be equally distributed amongst theφ(d)residue 
classes coprime to d. If this is the case, we have

When this is true for a given value of d and for all 
c coprime to d then we shall say that the primes 
are nicely distributed2  modulo d.  Proving this 
statement is another matter. Think of X tending 
to infinity: then one would like to know that the 
primes are nicely distributed modulo d for all d 
up to some limit, which it would be nice to take 
as large as possible. This is, however, only known 
when d is less than a power of log X (in fact d 
can be less than any power of log X, a statement 
known as the Siegel-Walfisz theorem).

It turns out that proving that the primes are nicely 
distributed for d up to about X1/2 is equivalent 
to the Generalised Riemann Hypothesis, so one 
should not expect too much progress soon. Re-
markably, one can do far better if one is prepared 
to know that the primes are nicely distributed only 
for3 almost all d. The classic result in this vein is 
the Bombieri-Vinogradov theorem, which asserts 
that the primes are nicely distributed modulo d 
for almost all d≤X1/2. The Bombieri-Vinogradov 
theorem is often described as a kind of Riemann 
Hypothesis on Average.
1 And log p if n = pk is a prime power.
2 Of course, this is only an informal definition and 
not a rigorous one because we have not elaborated 
upon the meaning of ≈.
3 Once again, this is an informal definition. To make 
it rigorous, one would need to elaborate upon the 
meaning of almost all as well as the ≈ notation from 
earlier.

∑

x≤X,x≡c (mod d)

Λ(x) ≈
X

φ(d)
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It is suspected that even more is true, a con-
jecture known as the Elliott-Halberstam Con-
jecture. There is a different Elliott-Halberstam 
conjecture EH(θ) for each value of θ < 1, and 
these conjectures get stronger as θ increases. 
Here is a rough statement:

Conjecture 2 
(Elliott Halberstam conjecture EH(θ)) 
The primes are nicely distributed modulo d for 
most values of d up to Xθ. Currently, we cannot 
prove this statement for any value of θ > 1/2.

GPY and BFFI

Goldston, Pintz and Yıldırım (henceforth re-
ferred to as GPY) established a remarkable link 
between the problem of finding bounded gaps 
between primes and the Elliott-Halberstam 
conjecture.

Theorem 3 (GPY, 2005) 
Suppose the Elliott-Halberstam conjecture 
EH(θ) holds for some value of θ > 1/2. That 
is, suppose the primes are nicely distributed 
modulo d for most values of d up to Xθ. Then 
we have bounded gaps between primes.

One should also say that GPY uncondition-
ally proved some results about gaps between 
primes far superior to any that had appeared 
before their work, showing for example that 
there are always pairs of primes of size around 
X and separated by about

√
logX , far less 

than the average spacing of log X for primes 
of this size.

About 20 years before that, in the 1980s, deep 
work of Bombieri, Fouvry, Friedlander and Iwan-
iec (in various combinations) had shown that a 
certain weak variant of the Elliott-Halberstam 
conjecture is true for some θ > 1/2. In fact they 
obtained θ = 4/7 in one of their results. Unfor-
tunately, their result came with some technical 
restrictions which meant that it could apparently 
not be combined with the GPY method to prove 
bounded gaps between primes41. (As an aside, 
one of the main ingredients in these works of 
BFFI were certain complicated estimates for
4 There is a technical discussion of exactly why not 
in the book Opera Cribro by Friedlander and Iwan-
iec, pages 408–409.

sums of Kloosterman sums due to Deshouill-
ers and Iwaniec, and coming from the analytic 
theory of automorphic forms; some people                  
apparently refer to this era as Kloostermania.)

What Zhang succeeded in doing is modifying, in 
a quite nontrivial way, both the GPY method and 
the BFFI ideas so that they meet in the middle. 
As it turns out, an equivalent modification of the 
GPY method had already been published by Mo-
tohashi and Pintz. They observed that in the El-
liott Halberstam conjecture EH(θ) one does not 
need the primes to be nicely distributed modulo 
d for most d up to Xθ. Rather one only needs52 
this to be so for most smooth values of d, that 
is to say values of d with no prime factors big-
ger than Xδ for some very small δ. In particular, 
one does not need to know anything at all about 
the case when d is prime or almost prime. Thus 
Motohashi and Pintz, and independently Zhang, 
established a result of the following form.

Theorem 4 (Motohashi-Pintz, Zhang) 
Suppose that the primes are satisfactorily distrib-
uted modulo d for most smooth values of d up 
to Xθ, for some value of θ > 1/2. Then we have 
bounded gaps between primes.

We could, if we wanted, call the fact that the 
primes are satisfactorily distributed modulo d for 
most smooth values of d up to Xθ the weak Elliott-
Halberstam conjecture, and denote it EHweak(θ). 
To reiterate, then, Motohashi-Pintz-Zhang prove 
that if we have EHweak(θ) for any θ > 1/2 then we 
still get bounded gaps between primes.

Incidentally, now might be a good time to remark 
that the bound for the gap H depends on how 
close θ is to 1/2, the relation being very roughly 
of the form H ~ (θ− 1/2)−3/2 with a suitably opti-
mised version of the argument, based on work of 
Conrey, Farkas, Pintz and Rev´esz.
  
The heart of Zhang’s advance is the following re-
sult.

5 In fact one can get away with a still weaker prop-
erty, in which one need only understand the num-
ber of primes congruent to c mod d for c varying in 
a small set of residue classes modulo d which varies 
in a multiplicative fashion with d.



Theorem 5 (Zhang) 
We have the weak Elliott-Halberstam conjecture 
EHweak(θ) for θ = 1/2 + 1/1168. That is, the primes 
are satisfactorily distributed modulo d for most 
smooth values of d up to Xθ. Hence, we have 
bounded gaps between primes.

We now turn to a few more details. First we say 
something about the GPY method (we shan’t 
say anything here about its modification due to 
Motohashi-Pintz and Zhang). This uses ideas 
related to the Selberg sieve. Then, we shall say a 
few words about the very technically demand-
ing proof of Theorem 5. The key words here are 
bilinear forms, Kloosterman sums and deep 
bounds of Bombieri and Birch coming from 
Deligne’s proof of the Riemann hypothesis over 
finite fields. There is no use of automorphic 
form bounds in Zhang’s argument, and this is 
where he deviates somewhat from many of the 
papers of BFFI (though there are closely related 
ideas in a paper of Friedlander and Iwaniec on 
the divisor function).

The GPY method

What has the distribution of primes modulo d got 
to do with finding small gaps between primes? 
Exposing this hitherto unseen connection was 
the remarkable advance of Goldston, Pintz and 
Yıldırım.

GPY in fact prove a result that is strictly stronger 
than bounded gaps between primes. We say that a 
k-tuple of integersh1, · · · , hk

is admissible if there 
is no obvious “congruence” or “local” reason why 
n+ h1, · · · , n+ hk cannot all be prime for infinitely 
many n. For example, {h1,h2,h3} = {0,2,4} is not ad-
missible, because at least one of these numbers is di-
visible by 3, whereas {h1,h2,h3} = {0,2,6} is admissible 
(though no-one has the slightest idea how to prove 
that n,n+2,n+6 are all prime for infinitely many n). A 
moment’s thought convinces one that the natural cri-
terion for admissibility is that, for each prime p, the 
set{h1, · · · , hk}omits at least one residue class modu-
lo p. If n* is this class then n+ h1, · · · , n+ hk could 
perhaps all be prime whenn ≡ −n∗ (mod p), be-
cause none of these numbers is divisible by p.  Here 
is the stronger statement that GPY proved.

Theorem 6 
Suppose we have the Elliott-Halberstam conjec-
ture EH(θ) for some θ > 1/2, that is to say the 
primes are nicely distributed modulo d for most 
values of d up to Xθ. Suppose that k≥k0(θ) is 
sufficiently large. Then for any admissible k-tuple 
h1, · · · , hk, there are infinitely many n for which 
at least two of n+ h1, · · · , n+ hk are prime.

The modification of Motohashi-Pintz-Zhang is to 
show that this is still true if we instead assume just 
the weak Elliott-Halberstam conjecture EHweak(θ), 
but we shall not be saying anyting further on 
the subject of this modification here. To see why 
Theorem 6 implies bounded gaps between primes, 
one need only note that there are admissible k-
tuples for every k. Indeed the set of all prime 
numbers between M and 2M will be admissible 
for all sufficiently large M, and the number of 
primes in this range grows without bound by 
the prime number theorem or in fact by weaker 
statements. It should be pointed out that finding 
tightly packed admissible k tuples, which is neces-
sary to elucidate the relationship between k and 
the prime gap H, brings one into contact with 
some thorny unsolved problems. To a large extent 
one must rely on computations to optimise this 
dependence for any particular value of k.

We’ll sketch the very broad outline of the proof 
of Theorem 6. It uses sieve theory, the branch of 
analytic number theory that has ultimately grown 
out of a serious study of the Sieve of Eratosthenes. 
Something that has been learned, rather painfully, 
over the last 100 years is that
Almost primes are much easier to deal with than 
primes.
An r-almost prime is a product of at most r primes. 
Fix an admissible tuple{h1, · · · , hk}. The rough 
idea of GPY is to choose an appropriate value of 
r > k and try to compute the expected number 
of n+ h1, · · · , n+ hk that are prime, when n is 
selected at random from those n for which the 
product (n+ h1) · · · (n+ hk)  is an r-almost prime. If 
we can show that this is > 1 then, for some value 
of n, there must be two primes amongst the n+hi.

To be a little more formal about this, write ν(n) 
= 1 if (n+ h1)...(n+ hk)  is an almost prime and 
0 otherwise. Let X be an arbitrary large quantity. 

19



20

Then what we are interested in is the ratio∑
X≤n<2X

(Λ(n+ h1)) + ...(Λ(n+ hk))ν(n)

logX
∑

X≤n<2X
ν(n)

(1)

(Recall that Λ is basically the characteristic func-
tion of the primes weighted by log.) If we can 
show that this is > 1, we will then know that for 
some nǫ[X,2X) at least two of n+ h1, · · · , n+ hk 
are prime, and this will conclude the proof of 
Theorem 6. To elaborate this idea, one must be 
able to estimate the numerator and denomina-
tor of (1). Now we come to a completely crucial 
idea, invented by Selberg. The idea is that there 
are weight functions ν(n) which behave morally 
rather like the characteristic function of the al-
most primes (or the set of n for which 
(n+ h1) · · · (n+ hk)is almost-prime), but which 
are much easier to compute with.  Let D, 1 < D < 
X, be a parameter and consider the function

ν(n) = (
∑

d|n,d≤D

λd)
2,

where at the moment(λd)1≤d≤D is any set of 
real numbers with λ1 = 1. The weight ν(n) is al-
ways nonnegative, and furthermore if n is prime 
and between D and X then ν(n) = 1. The reason 
is that in this case, the only divisors d of n are 1 
and n, and of these only d = 1 satisfies d≤D. For 
this reason we’ll call ν a majorant for the primes.

Let’s see how we can use a majorant like this to 
study a classical problem called the Brun-Titch-
marsh problem: that of estimating from above 
the number of primes in a range [X0 , X0+X). Now 
provided that61

D = o(X
1/2

), we can compute an 
asymptotic for the average value of ν(n) over 
X0 ≤ n < X0 +X and hence get an upper 
bound for the number of primes in this range. To 
see why the conditionD = o(X

1/2
)is critical, we 

need to do an actual calculation (though a very 
short one):∑

X0≤n<X0+X

ν(n) =
∑

X0≤n<X0+X

(
∑

d|n,d≤D

λd)
2

=
∑

d,d′≤D

λdλ
′
d

∑

X0≤n<X0+X;d,d′|n

1 (2)

Now the inner sum counts how many n there are 
in the rangeX0 ≤ n < X0 +X for which both 
d and d0 divide n, or equivalently for which the 
lowest common multiple [d, d0] divides n. Note 
that [d, d0] ≤ D2. Hence ifD = o(X

1/2
)then [d, d0] 

6 This should be read as “a bit smaller than X1/2”. In 
fact, one would require a condition like D < X1/2−ε 
for some ε > 0.	

= o(X) and the answer is essentiallyX/[d, d0] 
(Imagine you were asked how many multiples 
of 2014 there are in the interval [1010,1010 +105]: 
since 105/2014 = 49.65... it’s either 49 or 50, but in 
either case 49.65 is a good approximation.)
Therefore

∑

X0≤n<X0+X

ν(n) ≈
∑

d,d′≤D

λdλ
′
d

X

[d, d′]
(3)

If, however, D > X1/2, then we could have (in-
deed we will often have) [d, d0] > X, so the an-
swer might be 0, or it might be 1. (How many 
multiples of 2014 are there in the interval 
[1010,1010+102]?) We cannot say which without 
carefully inspecting X0, and getting a usable ex-
pression is impossible without further ideas. Let 
us say that X1/2 is the sieving limit for this prob-
lem, and we call D the sieving level. Note that 
the larger we can take D, the more flexibility we 
have in choosing the weights λd. This ought to 
lead to the majorant ν being a better approxim-
ant to the characteristic function of the primes 
themselves. Miraculously, even though we are 
forced to takeD = o(X

1/2
)there are choices of 

the weights λd for which ν is a reasonably good 
approximation to the characteristic function of 
the primes. We can find such λd by minimis-
ing the quadratic form in (3) subject to λ1 = 1, 
a routine exercise albeit one requiring some fa-
cility with Mobius inversion. When this is done, 
we find that in fact, for this choice of weights, 

∑

X0<X≤X0+X

ν(n) ≈
2X

logX

When X0 = 0 the majorant ν only overestimates 
the number of primes by a factor of 2. If one 
looks very carefully at ν(n) then one sees that it 
resembles a sort of characteristic function of al-
most primes, though it is best not to pursue this 
line of thought too far, leaving it perhaps as mo-
tivation for calculating somewhat blindly with 
ν. Note in particular that ν will not in general 
be {0,1}-valued. Note, by the way, that we have 
proven that the number of primes in [X0 , X0+X] 
is at most about 2X/logX for any X0, but that is 
another story.

It turns out that even if D is a very small power of 
X we still get a majorant ν that overestimates the 
primes by a constant factor, although this con-
stant gets worse as D becomes smaller.



Returning to our main discussion, recall (1). 
In the light of the crash course on the Selberg 
sieve we have just given, it is natural to consider 
defining

ν(n) = (
∑

d|(n+h1)...(n+hk)

d≤D

λd)
2 (4)

for appropriate weights λd, where D is as big as 
possible. To recap, one should think of ν as telling 
us the extent to which(n+ h1)...(n+ hk) is almost 
prime, though to attach any more precise mean-
ing to such a statement one must be more precise 
about the nature of the λd, about which I shall not 
say any more.

By a small modification of the above reasoning, 
one can compute the denominator in (1) pro-
vided that the sieving level D is o(X1/2). What, 
however, of the numerator? It may be split into 
terms of the form∑

n≤X

Λ(n+ h)ν(n)

for h = h1,...,hk. Trying to repeat the computation 
in (2) above, we instead arrive at the expression∑

d1,d2≤D

λd1
λd2

∑

n≤X

d1,d2|(n+h1)...(n+hk)

Λ(n) (5)

To understand this sum, we need to know how 
the primes (weighted using the von Mangoldt 
function Λ) behave modulo d = [d1,d2], and this 
quantity may be as large as D2. If we know the 
Elliott-Halberstam conjecture EH(θ) (primes are 
nicely distributed modulo d for most d up to Xθ) 
then we will be fine so long as D = o(Xθ/2). Un-
conditionally, that is to say using just the Bomb-
ieri-Vinogradov theorem, we may only take the 
sieving level D to be about X1/4, which means 
ν(n) gives a weaker notion of (n+ h1)...(n+ hk)

being almost prime.

At this point one must dirty the hands by do-
ing an actual computation of the numera-
tor and denominator of (1) with a judicious 
choice of the weights λd. Making a sensible 
(by which we mean more-or-less optimal) 
choice, and taking D to be almost Xθ/2, one 
eventually computes that the ratio in (1) is

2θ

(1 + k−1/2)2

Remember that k is the number of elements in 
our admissible tuple{h1, · · · , hk}. I should say 

that I don’t think I could motivate the result 
of this computation particularly well, if at all, 
even to an expert audience. I’m not such there 
even is a conceptual explanation of it – you just 
have to do it.

Recall that we wanted the ratio to be greater 
than 1: this would give us bounded gaps be-
tween primes. Even if k, the number of ele-
ments in our admissible tuple, is very large one 
does not achieve this if θ ≤ 1/2.  This is pretty 
unfortunate, since we can only proceed uncon-
ditionally when θ ≤ 1/2. As soon as θ is even a 
tiny bit larger than 1/2, however, the ratio will 
indeed be larger than 1 provided that k is big 
enough, and we will get bounded gaps between 
primes as discussed above.  The value θ = 1/2 
is thus a crucial barrier for the GPY method: 
with θ < 1/2 one gets very little, whilst with θ > 
1/2 one obtains bounded gaps between primes.

This concludes our cursory discussion of the 
GPY method, which links bounded gaps be-
tween primes to the distribution of primes in 
progressions. We turn now to the other side of 
the story, in which the aim is to understand as 
much about the latter as possible.

Primes in arithmetic 
progression

We turn now to a description of Zhang’s major 
advance, the proof of Theorem 5. Let us recall 
the statement.

Theorem 7 (Zhang) 
We have the weak Elliott-Halberstam conjec-
ture EHweak(θ) for θ = 1/2 + 1/1168. That is, the 
primes are satisfactorily distributed modulo d 
for most smooth values of d up to Xθ.

We did not say exactly what satisfactorily dis-
tributed means, but it basically means that we 
are interested in showing that71 if (c,d) = 1 then

∑

x≤X

x≡c (mod d)

Λ(x) ≈
X

φ(d)

7 In fact, this only needs to be shown when c be-
longs to a specific and fairly small set of residue 
classes varying in a multiplicative fashion with d, 
but will not mention this point again.
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for most smooth d < Xθ. Remember that by 
smooth we meant that all prime factors of d 
are at most Xδ for some very small δ. The way 
in which this is used is that it allows us to sup-
pose that d is wellfactorable, which means that 
for any Q,R with QR ~ d we can find a factori-
sation d = qr with q ≈ Q and r ≈ R. Exactly how 
this property is used is not very easy to explain 
properly, but bear with us. One can, however, 
immediately observe that if q,r are coprime 
then the conditionx ≡ c (mod d)is equiva-
lent to conditions on x modulo q and modulo 
r, by the Chinese remainder theorem, so there 
is a sense in which we are reducing the size of 
the moduli and thereby making the problem 
simpler.

At this point in the exposition it is slightly 
convenient to work with averages rather than 
sums, which we notate using the probabilistic 
E notation, though there is nothing random in 
our discussion. Our task is more-or-less equiv-
alent to estimating an average over primes of 
the form

Ex≤XΛ(x)ψ(x) =
1

X

∑

x≤X

Λ(x)ψ(x)

where in this case
ψ(x) = 1x≡c (mod d) − 1(x,d)=1/φ(d) (6)

and the goal is to show that this average is ap-
preciably smaller than the “trivial” bound of 
about 1 which comes from the prime number 
theorem.

To attack averages like this, we introduce a no-
tion that is central to additive prime number 
theory: that of expanding in terms of bilinear 
forms. Suppose that instead of the above aver-
age we were instead asked to estimate

Ex≤X(α ∗ β)(x)ψ(x) (7)

whereα, β are arithmetic functions with 
|α(m)| , |β(n)| ≤ 1, and with α(m) support-
ed on the rangem ∼ M andβ(n)on the 
rangen ∼ N , where MN = X. Here, ∗ de-
notes Dirichlet convolution, that is to say

(α ∗ β)(x) =
∑

mn=x

α(m)β(n)

The function ψ  is completely arbitrary for the 
purposes of this discussion, except we assume 
that |ψ(x)| ≤ 1 for all x. We even let ψ  be 

complex-valued.  The sum (7) can more-or-less 
be rewritten as

Em∼MEn∼Nα(m)β(n)ψ(mn)

Applying the Cauchy-Schwarz inequality, the 
square of this is bounded by

Em∼M |En∼Nβ(n)ψ(mn)|2

= En,n′∼Nβ(n)β(n
′)Em∼Mψ(mn)ψ(mn′)

Applying Cauchy-Schwarz a second time, the 
square of this is bounded by

En,n′∼NEm,m′∼Mψ(mn)ψ(mn′)ψ(m′n)ψ(m′n′) (8)

The key thing to note here is that the unspecified 
functionsα, βhave completely disappeared, and 
we are left staring at an expression involving only
ψ . Perhaps we might hope to estimate it, the 
aim being to improve substantially on the trivial 
bound of 1. If we can do this, we have a kind of 

“certificate” which asserts thatψalways gives non-
trivial cancellation in averages such as (7), no 
matter what α and β are.

There are two rather obvious barriers to this 
observation being at all useful, and they are the 
following.

(i) We in fact wish to estimate the average 

Ex≤XΛ(x)ψ(x)

but we have said nothing about the extent to 
which Λ can be expressed in terms of Dirichlet 
convolutions α ∗ β , nor even offered any 
motivation for why this should be expected.
(ii) We are interested in a specific function ψ,  
given by (6). Why should this ψ allow us to pro-
vide a certificate by exhibiting nontrivial cancel-
lation in (8)?

With regard to (i), many readers will know that
Λ = µ ∗ log , where µ is the Mobius function.  
However, this turns out not to help greatly in the 
above scheme. The reason is that in practice we 
will only be able to estimate expressions such 
as (8) for quite restricted ranges of M and N, 
usually with M and N close in size, and with 
the decomposition µ ∗ log there is no 
opportunity to seriously restrict these ranges.

A successful technique depends on a remarkable 
identity of Linnik, or rather on a kind of trun-
cated variant of it due to Heath-Brown, which we 
shall not state. The identity states that



Λ(n)

log n
=

∑

k

(−1)k

k
τ ′
k
(n)

where τ’k(n) is the number of ways to factor n 
= n1...nk with ni  > 1 for all i. If one knows the 
definition and very basic properties of the ζ func-
tion, the proof is just a couple of lines long: ob-
serve that
log ζ(s) = log(1 + (ζ(s)− 1)) =

∞∑

k=1

(ζ(s)− 1)k

and compare coefficients of n−s on both sides. 
The right hand side is pretty obviously the right-
hand side of Linnik’s identity. As for the left-hand 
side, its derivative is ζ ′(s)/ζ(s), which is well-
known to be −

∑

n

Λ(n)n−s . Indeed, it is precisely 
this relation that links primes and the ζ-function. 
Integrating with respect to s, we obtain Linnik’s 
identity.

Note that τ’k(n) is a Dirichlet convolution of k 
copies of the function which equals 0 at 1 and 
is 1 everywhere else. Chopping the domain of 
this function into various ranges, we can indeed 
write Λ as a sum of a number (not too large) of 
convolutionsα ∗ β , with α(m) supported where 
m ∼ M  and β(n) where n ∼ N , with consid-
erable flexibility in arranging the ranges M and N 
we need to worry about. The precise arrangement 
of these ranges is a rather technical matter, and 
suffice it to say that Zhang classifies them into 
three different types (plus a somewhat trivial 
type): these are called Type I, II and III. Actually, 
the Type III sums in fact involve certain 4-fold 
convolutions α1 ∗ α2 ∗ α3 ∗ α4.

What about (ii), that is to say the issue of obtain-
ing a “certificate” for ψ  which certifies that aver-
ages such as         
exhibit cancellation? One may note that (8) is cer-
tainly not always o(1). Rather trivially, when ψ  is 
the constant function 1 we get no cancellation. 
The same is true if |ψ(x)| = 1 and if ψ  is mul-
tiplicative in the sense that φ(mn) = φ(m)φ(n),

as can be easily checked.  (One consequence of 
this observation is that the whole scheme we 
have just outlined is somewhat unhelpful for 
showing that Λ does not correlate with a single 
Dirichlet character χ.) However, our function 

ψ(x) = 1x≡c (mod d) −
1(x,d)=1

φ(d)
does not obviously exhibit multiplicative behav-
iour and therefore one can hope to produce a 
certificate for this ψ , at least on average over d.

The reader will not be surprised to hear that the 
above discussion was an oversimplification, al-
though it captures something of the key ideas. 
There are other types of “certificate” than (8). The 
key tools that are brought to bear on estimating 
averages such as Ex≤X(α ∗ β)(x)ψ(x) (7)with 
our particular choice of ψ  are:

(i) Cauchy-Schwarz, similar to the above; 
(ii) Fourier expansion, for example of ψ ; 
(iii) Shifting the range of summation, that is to 
say replacing the En∼NF (n) by
En∼NE|k|≤KF (n+ k) , which should be 
roughly equal to it if K ≪ N;
(iv) Certain changes of variable and substitutions; 
(v) Completion of sums, that is to say replacing 
an incomplete sum

∑

x∈I

f(x)by sums 
∑

x∈Z/dZ

f(x)ed(hx)

whereI ⊂ Z/dZis an interval, and ed(x) := e
2πix/d .

Considerable extra flexibility is available under 
the “well-factorable” assumption that d = qr; in-
stead of averaging over d ≤ Xθ, one now 
averages over both q and r, and this affords still 
more opportunity to vary the application of the 
above four ingredients. The application of (i) to 
(v) above (in various combinations) throws up 
other sums that need to be estimated. The most 
interesting such case for Zhang occurs in his 
treatment of the so-called Type III sums, where 
expressions such as the sum∑

n,n′,l (mod d)

ed(
c1

ln
+

c2

(l + k)n′
+ h1n+ h2n

′) (9)

are relevant. Here, h1,h2,k are parameters, and 
the sum over n,n’,l is restricted somewhat, in 
particular to n,n’,l,l+k �= 0 so that it makes sense.

It is very hard to explain how an expression 
like this comes up without going through the 
applications of each of the techniques (i) to 
(v) (which all occur here) in turn. Suffice it 
to say that the k comes from shifting as in 
(iii), the h1,h2 come from (v) (followed by an 
application of Cauchy-Schwarz) and the 
instances of c/n ultimately come from an initial 
Fourier expansion of 1x≡c (mod d) where x = mn.

Now it turns out that (9) is in fact bounded 
by (essentially) d3/2, apart from in certain 
degenerate cases This is about as good an 
estimate as one should hope for, since it 
represents essentially square-root cancellation, 

Ex≤X(α ∗ β)(x)ψ(x) (7)
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as the number of things being summed over is d3. 
This is by no means a trivial fact, and depends on 
cohomological ideas of Deligne, and in particu-
lar the Riemann hypothesis over finite fields. 
When d = p is prime, the sum (9) may perhaps 
be written more suggestively, to an algebraic 
geometer, as∑

(x1,x2,x3,x4)∈V

ep(x1 + x2 + x3 + x4)

whereV ⊂ F 4

p
is a variety αx1x2 + βx3x4 = γx1x2x3x4   

In other cases (the analysis of the Type I and II 
sums) more standard sums such as Klooster-
man sums

∑

x1x2=c

ep(x1 + x2)come up. This particu-
lar sum is bounded by 2

√
p, a famous bound 

of Weil which does admit an elementary (in 
the technical sense) proof due to Stepanov. 
This is not the case with the Bombieri-Birch 
bound,which needs the whole of the algebro-
geometric machinery.

The great majority of these ideas can be found in 
the work of combinations of Bombieri, Fouvry, 
Friedlander and Iwaniec. The sad thing, however, 
is that this excellent and optimal bound of d3/2 
just fails to cancel out some losses coming from 
other manœuvres, particularly the completion 
of sums manoeuvre (v) which is rather costly 
if the length of I is much less than d. Instead of 
a valid certificate for ψ , one simply recovers, 
essentially, the trivial bound for (8) – not, perhaps, 
the most spectacular use of the deep machinery.

The crucial new innovation of Zhang is to 
exploit the presence of the factorisation d=qr 
(which, remember, can be selected quite flexibly). 
One might imagine that, by the Chinese remain-
der theorem, one obtains a product of sums 
similar to (9) modulo q and modulo r, leading 
to a bound of (qr)3/2 and no eventual gain. What 
Zhang miraculously finds, however, is that by 
making sure the shift in (iii) is by a multiple of 
r, the sum modulo r is not of Bombieri-Birch 
type (9), but degenerates to something like
 ∑

s1,s2,n (mod r)
s1,s2,n �=0

er(
s1 − s2

s1s2n
)

This exhibits better than square root cancellation, 
being of size essentially r, as one can easily check. 
(In fact, this is a slight simplification: Zhang actu-
ally obtains a Ramanujan sum in which the vari-
able n is constrained to be coprime to r, but the 
better-than-square-root cancellation still holds).
Thus instead of (qr)3/2 Zhang gets instead q3/2r, 
and the factor of r1/2 thus saved is crucial in 

making the argument work and establishing 
Zhang’s remarkable theorem.

Polymath 8a
Shortly after Zhang’s paper came out, Terence Tao 
orchestrated a collaborative project to reduce the 
value of H as far as possible from Zhang’s value of 
70000000, and more generally to understand all 
aspects of Zhang’s work. One of the many great 
things about this project, in my view, was that  
without it there could well have been thou-
sands of papers improving H in various different 
ways. One big achievement of this project was to 
increase Zhang’s 1/1168 to 7/300, that is to say to 
prove EHweak(1/2 + 3/700), and to refine various 
other aspects of the argument, including the sieve 
theory and the computation determination of 
admissible tuples, so as to eventually reduce H to 4680.

Another significant achievement of the project was 
to remove the dependence on the deepest algebro-
geometric results, although if this was one’s concern 
then the value of H could only be taken to be 14950. 
At this point, the entire argument could reasonably 
be presented from first principles in an advanced 
graduate course. (Personally, I found it extraordi-
nary that initially one could only get bounded gaps 
between primes using the full force of Deligne’s ma-
chinery, and no finite bound without it.)

Maynard–Tao 
As Polymath 8a was nearing completion, James 
Maynard and Terry Tao simultaneously made a 
dramatic advance which vastly simplifies the whole 
argument. Students wishing to study bounded gaps 
between primes may now read the 23-page paper of 
Maynard, freely available at 

http://arxiv.org/abs/1311.4600.  
In the Maynard–Tao argument, one still needs in-
formation about the distribution of primes in pro-
gressions, but things now work with any positive 
value of θ > 0: the GPY barrier of θ = 1/2 turned 
out to be somewhat illusory. The crucial new idea of 
Maynard and Tao is to consider a different weight 
function ν.  

A second Polymath project, again led by Terence 
Tao, has been working on the problem in the 
light of the Maynard–Tao development. When 
the first version of this paper was submitted on 
20/2/14 the record value of H was 264, but when 
I came to correct some typos a few days later this 
value had already been reduced to H = 246. 
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The elliptic modular function, j, invariant under 
PSL(2, Z), has Fourier expansion

j(q) =
E4(q)

3

∆(q)
=

∞∑

m=−1

cmq
m

=
1

q
+ 744 + 196884q + 21493760q2 + ...

(1)

as z → i∞, where q = e2πiz is the nome for z;

E4(z) = 1 + 240
∞∑

n=1

σ3(n)q
n  

is the theta series for the E8 lattice, σ3(n) =
∑

d|n

d3 and

	
∆(q) = q

∞∏

n=1

(1− qn)24 =
∞∑

m=1

τmq
m

= q − 24q2 + 252q3 − 1472q4 + 4830q5 + ...   (2)

is the modular discriminant [S]. There are two new 
congruences.

OBSERVATIONS:

•	 [JM] 
(

24∑

m=1

c
2

m

)
mod 70 ≡ 42

•	 [YHH] 
(

24∑

m=1

τ 2
m

)
mod 70 ≡ 42

The vector ω = (0, 1, 2, ... , 24 , 70) lives in the Lo-
rentzian lattice II25,1 in 26 dimensions as an isotro-
pic Weyl vector [C], allowing us to construct the 
Leech lattice as ω⊥/ω. Watson’s [L, W] unique

non-trivial solution to
n∑

i=1

i
2 = m

2  is (n, m) = (24, 70).

Indeed, the second author’s observation 35 years 
ago that
	 196884 = 196883 + 1  (3)

sparked the field of “Monstrous Moonshine” [B, 
CN], underlying so much mathematics and phys-
ics, relating, inter alia, modular functions, finite 
groups, lattices, conformal field theory, string the-
ory and gravity (see [G] for a review of some of the 

vast subjects encompassed) in which the j -invariant 
and the Leech lattice are central. As we ponder the 
meaning of life, we should be aware of the prescient 
remarks of the author [A], Douglas Adams:

“The Answer to the Great Question . . . is . . . For-
ty-two,” said Deep Thought, with infinite majesty 
and calm.
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1: Describing the noise

One of the key tasks in Image Processing consists 
in removing interferences in the image coming 
from acquisition problems due, for instance, to 
external factors, like temperature or illumination. 
We have all experienced similar issues when tak-
ing a picture of a very dark scene, for example in 
a clear and fresh summer night when looking at 
dazzling stars shining in the sky. Even with pro-
fessional cameras, the result may look grainy, not 
clean nor clear. We say that the image is corrupted 
by what is called noise, the granular component 
we want to remove in order to get a clean version 
of the image. Depending on applications and on 
the physical properties characterising the trans-
mission, acquisition and processing steps, dif-
ferent types of noise can be considered. In many 
cases, the noise is assumed to follow a Gaussian 
distribution, Fig. 1a. This assumption relies, main-
ly, on a probabilistic asymptotical property of 
noise distributions, called Central Limit Theorem. 
According to this result, the sum of independent 
random variables of any distribution converges, 
as the number of measurements goes to infinity, 
to a Gaussian-distributed random variable. Very 
often, though, this very reasonable assumption 
does not model realistically the actual physical 
source of noise corrupting the data. For instance, 
in the case when transmission problems `switch 
off ’ just some of the pixels in the image, a differ-
ent, not everywhere-spread noise distribution is 
preferred: the noise model that arises is called im-
pulse noise, Fig. 1b. Finally, in astronomical Im-
aging applications, physical properties of the light 
reflecting its quantised nature have to be consid-
ered. This results in a photon-counting process 

which mathematically relates to a discrete Poisson 
probability distribution, Fig. 1c. Differently from 
the additive nature of the Gaussian-type noise, 
Poisson distribution is signal dependent, that is 
the intensity of the noise depends on the bright-
ness of the regions in the image: brighter regions 
will present higher level of noise. In Fig. 1 we can 
observe some examples of the noise distributions 
described. Many more can be considered: nor-
mally they model signal-dependent noise distri-
butions in the form of multiplicative noise (like 
speckle noise, Rician noise. . . ) arising, for in-
stance, in MRI applications. However, the mathe-
matical modelling and analysis of these models is 
rather involved, so for what follows we will focus 
on the three noise models (Gaussian, impulse and 
Poisson) mentioned above.

2: Image denoising

The task of image denoising can be described 
mathematically as an inverse problem, that is giv-
en our noisy image f , we want to reconstruct the 
noise-free image u such that:

f = T (u)  	     (1)

In (1) the operator T models the degradation 
process u goes through: in our case this can be 
thought of as the operator that encodes the phys-
ical properties responsible of the noise present in 
the image. Other choices of T can be made: for 
instance, T can represent a blur operator or di-
vide regions in the image where the information 
is available from others where the information 
has been lost (like, for example, for dis-occlusion 
problems). 

(a) Gaussian noise. (b) Impulse noise. (c) Poisson noise.

Figure 1: Different noise distributions for different Imaging applications.
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What is important to highlight here is that, in gen-
eral, problem (1) is not easy to solve: uniqueness 
of the solution and/or its stability with respect to 
the initial data can fail. These problems are nor-
mally said to be ill-posed. In order to get a solution 
of (1) an alternative formulation has to be consid-
ered. A traditional approach consists in regular-
ising the problem by adding some a-priori infor-
mation describing the properties of the solution 
we are looking for. In our Imaging framework 
the question then is: what are the fundamental 
properties of an image? The answer is: the edg-
es. Thanks to the edges in the image, objects can 
be identified from their background and details 
within objects are distinguishable: as such, every 
regularisation procedure used to reformulate (1) 
needs to encode such features.

2.1 Designing a tailored method

In order to derive a regularisation model suitable 
for our Imaging tasks, a careful mathematical 
modelling is needed. Images have to be inter-
preted as functions defined on an image domain  
(the bi-dimensional grid of pixels) and associated 
to a number or a set of numbers corresponding to 
either the greyscale or the RGB (red, green, blue) 
intensity values, respectively. The modelling of 
images in function spaces is rather a delicate point 
in the design of an optimal reconstruction meth-
od: the choice of the function space itself reflects 
in the expected regularity of the image we want 
to reconstruct. Function spaces which allow too 

much regularity have to be discarded as they will 
destroy the main structures in the image because 
of their strong smoothing properties, see Fig. 2. 
We refer the reader interested in knowing more 
about Image modelling and the choice of suitable 
function spaces for Imaging tasks to [1, 7].

Over the last twenty years non-smooth regularis-
ers have been studied. Namely, Imaging commu-
nities have focused their attention on Total-Vari-
ation (TV) regularisation metods. In words, TV 
can be thought of as a regularising term that while 
smoothing out the unwanted noise from the im-
age, preserves its fundamental and geometrical 
structures, such as edges, compare Fig. (2c). In 
more mathematical words this corresponds to 
consider a weaker norm of the image gradient 
which does not enforce too much regularity, but 
identifies contours and edges in the image.

A general regularisation method of inverse prob-
lems like (1) has the form:

	 find v such that v minimises 

J(v) := R(v) + λφ(f, v)  (2)

The approach (2) is an example of energy-mi-
nimisation approach: we model our denoising 
problem by assuming that a scalar quantity J , the 
energy, is associated to our problem. Our solution 
u will be the function in correspondence of which 
the energy J achieves its minimum.

(a) Noisy Image. (b) Smooth regularisation [10]. (c) Non-smooth regularisation [9].

Figure 2: The choice of the regularisation term and the function space affects the reconstruction: 
smooth regularisations remove noise though destroying fundamental structure; non-smooth 

regularisations (such as Total Variation) removes the noise, while preserving edges.
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Figure 3: T.L.: Acquired noisy image. T.R.: Denoised image 
with large λ. The regularisation is poor and the noise is still 
present in the reconstruction. B.L.: Optimal denoised im-
age. B.R.: Overregularised denoised image.Fundamental 
structures have been destroyed.

We model J as the sum of two different terms: 
the regularisation term R(u) which shall encode 
the properties listed above and the fidelity term 
φ(u, f)which models in a mathematical way the 
statistics of the noise, i.e. its probability distribu-
tion. The parameter λ balances the effect of the 
regularisation against the fidelity term and, heuris-
tically, can be thought of as a quantity that mea-
sures how much we trust the acquired data. In the 
following we want to focus on its optimal choice 
which is a fundamental issue in applications where 
normally the right value of this parameter is found 
by a trial-error method.  For medical applications, 
the choice of such parameter is crucial. Figure 3 
shows some different TV reconstructions of the 
noisy image of a brain.

For medical purposes we would not like a poor re-
construction of our measured noisy image, which 
would not remove noise that could possibly oc-
clude some regions of interest. On the other hand, 
we would not like regularise our image too much 
and lose meaningful anatomical structures. Some-
where between these two extremes we look for the 
optimal balance between trust in the data and noise 
regularisation: as mathematicians we want to find it 
in a sensible, realistic and automatised way.

3: The training idea

Let us stick for a moment to the medical imaging 
framework. In such applications, like MRI for in-
stance, the accuracy of the measurements can be 
tuned. In general, we can think the accuracy to be 
proportional to the image acquisition time. 

High-acquisition times will result in clean, almost 
noise-free images which will approximate well the 
ground-truth, while low-acquisition times will cor-
respond to blurry and noisy images. 

In clinical practice, ideally high acquisition times 
are not feasible due to the computational costs 
and the reluctance of patients to stay for too long 
in MRI scanners for examinations. On the other 
hand, standard clinical acquisition times do pro-
duce some noise in the image, so a pre-processing 
step is fundamental for any subsequent diagnostic 
image-based evaluation and therapy planning. For 
a realistic and tailor-made denoising model we will 
exploit in the following two main ideas: a learning 
approach to make the estimation of the optimal 
balance robust and a correct modelling of the dif-
ferent noise distributions in order to cover the dif-
ferent noise models presented in Section 1.

3.1 Learning the noise via training sets

The idea of using database of images is quite real-
istic in applications. In medical Imaging, specially
designed objects called phantoms are used to anal-
yse and tune scanning devices. These objects may
resemble anatomical structures of the human body 
and because of their design they provide consistent 
and reliable results. Based on this, we describe in 
the following our learning idea:

1. We use fixed devices producing, at each scan, the 
same type of noise in the image, whose level (i.e. 
intensity) is unknown;

2. A previously-acquired (or simulated) database of 
images, typically of phantoms, is available. We as-
sume we have two different versions of each image 
uk (k=1,...,N) in the database: a clean, almost noise-
free version uk acquired with high acquisition times 
and a second version of it fk, acquired within stan-
dard medical acquisition times and consequently 
corrupted by noise.

We aim to find the optimal λ for the problem (2) 
such that for every k, the TV reconstruction of fk
matches at best the corresponding noise-free uk 
version of the same image [8]. Because of our
assumption 1. above, we shall now use the comput-
ed λ as an optimal parameter in order to process a 
new, not-simulated image, such as a real MRI scan 
of the brain of a patient.
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Figure 4: Sample of 5 images of OASIS MRI brain database: original images (upper row), noisy images
(middle row) and optimal denoised images (bottom row),  λopt = 3280.5.

In Figure 4 we show an example of a simulated da-
tabase of MRI scans of brains: the first two rows
represent the two noise-free and noisy versions of 
the images in the database, respectively, whereas 
the third row contains the denoised images ob-
tained with the optimal parameter λ computed as 
described above. Further work has to be done in or-
der to improve upon the characteristic `watercolor’ 
effect in the computed reconstruction: this, in fact, 
relates to the properties of the TV regularisation 
term used. More general regularising terms R(u) 
can improve upon this property, like, for instance, 
the Total Generalised Variation, [4].

For this example the noise has been assumed to be 
Gaussian-distributed, but in the following we will 
comment briefly on how to incorporate different 
noise models, as discussed in Section 1. From a
computational point of view, solving non-smooth 
problems of the form (2) is very demanding, es-
pecially as the number of images in the database 
becomes very large, which is desirable in order 
to make the noise estimation robust. Due to our 
modelling assumptions 1. and 2., though, some 
sampling strategies can be used to improve upon 
efficiency, [6].

3.2 Optimal modelling

The regularisation approach (2) can accommodate 
easily different noise distributions like the ones cor-
responding to impulse or Poisson noise. Depend-
ing on the application considered,

Heuristically, quadratic-type fidelity terms are gen-
erally considered for Gaussian noise distributions, 
whereas the modulus of the difference between u 
and f is preferred for impulse noise distributions. 
Finally, more sophisticated, logarithmic-type, fidel-
ity terms are used for Poisson noise distributions 
[3]. When just one single noise distribution is as-
sumed to corrupt the measurements, the approach 
described above can still be employed, by simply 
using the suitable fidelity term for describing the 
problem. But one can ask the question: what if mul-
tiple noise distributions are present in the image? 
As explained, each of them can be the result of dif-
ferent acquisition/transmission problems, so the 
combined presence of noise is perfectly reasonable 
in applications.

An immediate extension of (2) for the mixed-noise 
case would be considering a model that, for the 
very easy case of two noise distributions, reads as:

find v such that v minimises

J(v) := R(v) + λ1φ1(f, v) + λ2φ2(f, v)      (3)

that is a model that describes the joint presence 
of two noise distributions through the sum of the 
corresponding fidelity terms.  The same strategy 
described in Section 3.1 would then, heuristically, 
determine the optimal size of the parameters λ1 and  
λ2 which on one side will resemble the data fitting 
with respect to the degradation due to each of the 
two noises present in the image and,
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(a) Noisy image.

(d) Impulse component.(c) Gaussian component.

(b) Denoised image.

Figure 5: Noise decomposition through infimal-convolution: 
the mixed-noise distribution is assumed to be a combination of 

Gaussian and impulse noise.

on the other side, would balance against the size of 
the regularisation, as before. 

More complicated operations can be considered 
in order to solve this task. For instance, applying 
the discrete analogue of the convolution operator 
called infimal-convolution [2, Chapter 12] to φ1 
and φ2 one can get from the model the additional 
property of noise decomposition into its compo-
nents, compare Fig. 5.

4: Conclusions

The recipe for image denoising requires different 
ingredients. First of all, a careful understanding of
the physical and statistical properties characteris-
ing the problem is needed in order to formulate an
appropriate mathematical model. This reflects in 
the correct choice of the data fidelity term by which 
we can mimic the noise distribution corrupting the 
data. A fundamental aspect then is also the opti-
mal choice of parameters which will result in an 
optimal image reconstruction. Training the model 
using database of images seems to be a promising 
and reliable strategy to design reliable and efficient 
image denoising methods, [5].
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Puzzles, Prisoners and 
Probability

Every once in a while, I hear puzzles about 
100 prisoners and a meticulous, demanding 
warden. All of these puzzles share a com-

mon characteristic: a set of prisoners must work 
together to devise a clever scheme to thwart the 
warden. I hear these puzzles often enough that 
each time they reappear, I view them with an in-
creased level of understanding corresponding to 
the stage of my mathematics education.

Any problem may have a solution, but, some-
times, that solution may not be the most efficient 
one possible. For example, suppose you want to 
find something in your room but don’t remember 
where you put it. You can either search the room 
by yourself. Or you can call your (many) friends 
to help you. From a correctness standpoint, both 
solutions are correct. You’ll find what you’re look-
ing for eventually. But from an algorithmic stand-
point, the second solution where you search in 
parallel with your friends is better because it has 
a shorter runtime. The same holds for solutions 
to the 100 prisoners puzzle. Some solutions may 
be theoretically correct answers to the puzzle but 
may have expected runtimes that exceed the lifes-
pan of an average person and are, thus, practically 
undesirable. Now, through this lens, the lens of a 
theoretical computer science student, I would like 
to present to you the 100 prisoners puzzle and its 
variants.

100 Prisoners and a Light Bulb
The original, very famous puzzle involving an in-
terrogation room, a light bulb, and 100 prisoners 
is the following (paraphrased from Wu in [3]):

One hundred prisoners just arrived in prison. The 
warden tells them that starting tomorrow, each of 
them will be placed in an isolated cell, unable to 
communicate amongst themselves. Each cell has a 
window so the prisoners will be able to count the 
days. Each day, the warden will choose one of the 
prisoners uniformly at random with replacement, 
and place him in a central interrogation room con-
taining only a light bulb with a toggle switch. The 
light bulb is initially switched off. The prisoner may 
observe the current state of the light bulb. If he 
wishes, he may toggle the light bulb. He also has 
the option of announcing that he believes all pris-
oners have visited the interrogation room at some 
point in time. If this announcement is true, then all 
prisoners are set free, but if it is false, all prisoners 
are executed. The warden leaves, and the prisoners 
huddle together to discuss their fate. Can they agree 
on a strategy that will guarantee their freedom? [3]

One common solution to the puzzle is to divide 
the days into 100-day blocks and instruct any 
prisoner to toggle the light off if he is interrogated 
twice within the same block. The first prisoner of 
each block turns the light on and the last prisoner 
checks whether the light is still on when he enters 
the interrogation room at the end of the 100-day 
block. If the light is still on and he did not enter 
the room on any previous day within the block, he 
declares that all prisoners have visited the interro-
gation room [3]. This solution is technically cor-
rect because it guarantees the prisoners their free-
dom, but the prisoners are expected to be freed 
after 1.072 ×1044 days, in years ≈ 1031 times the 
age of the universe. From an algorithmic stand-
point, this solution is rather poor because it has 
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an expected runtime of O(n1/2en) [3] for n prison-
ers.

The challenge now is to find a solution that is cor-
rect and also has an optimal runtime. Such a solu-
tion is more likely to guarantee that the prisoners 
are freed while they are still alive.

The canonical (better) solution is to designate a 
“leader” to be the person who counts the number 
of unique prisoners who have been interrogated. 
The leader may do so by counting the number of 
times the light bulb has been switched on. A pris-
oner who has not yet toggled the light switch will 
turn the light on if it is currently off. A prisoner 
will do nothing if he enters the room when the 
light is currently on. The leader turns the light off 
each time she leaves the room and increases her 
counter when she sees a light that is on. Thus, after 
counting 99, the leader may declare that all the 
prisoners have been interrogated at least once. (It 
is sufficient to count to 99 because the leader her-
self counts as the last prisoner.)

How long are the prisoners expected to wait? 
Suppose that T represents a counter for the num-
ber of times the bulb has been switched on. We 
may count the expected number of days until T 
= 99. Let Xi denote the number of days that pass 
between an increment of the counter from when 
T = i until T = i + 1. Let Yi denote the number 
of days from when a leader turns off a light bulb 
until a prisoner turns on the light. Let Zi denote 
the number of days from when a prisoner turns 
on the light until the leader enters the room to 
see the newly turned on light bulb. Thus, Xi=Yi+Zi. 
Let X be the number of days the strategy requires 
in total before the prisoners are freed. Given n 
prisoners, the probability of turning on the ith 
light is n−i

n
. The probability that the leader enters 

the room on any day is 1
n

. By linearity of expecta-
tion,

In asymptotic notation, the “leader” algorithm 
has an expected runtime of O(n2) days [3]. When 
there are 100 prisoners, the expected wait time 

is 10417.7 days or approximately 29 years [3]. 
Though still a long time, it is within the prisoners’ 
lifespans.

Wu [3] further summarized some strategies 
that may lead to even shorter wait times. One 
such strategy achieves an expected runtime of 
O(n(logn)2). The key insight behind this algorithm 
is to allow “assistant” leaders to help the leader 
by doing some of the counting. Then, the leader 
would sum together the totals of all the “assistant” 
counts to determine if all prisoners have visited 
the interrogation room. To do this, we must be 
able to divide up the counting of the light bulbs 
into blocks of days. There must be a block for as-
sistants to count the number of prisoners and a 
different stage for assistants to tell the leader their 
total [3]. See [3] for more details.

But can we achieve a solution with an even bet-
ter runtime, for example, a solution with an O(n) 
expected runtime? Turns out, the answer is no 
for the O(n) runtime solution. It is a common 
joke among CS theoreticians that we hate lower 
bounds because it prevents us from making bet-
ter algorithms. The reason why we can’t create an 
O(n) algorithm for the 100 prisoners problem is 
precisely that a lower bound prevents us from do-
ing so. The expected number of days for all pris-
oners to enter the interrogation room at least once 
is O(nlogn), therefore no strategy, no matter how 
clever, may achieve a better expected runtime 
than O(nlogn), [1]. A simple calculation confirms 
this lower bound. Let the random variable Xi be 
the number of days until the i-th unique prisoner 
with probability of selection                   is picked.

￼￼￼￼￼￼￼￼￼￼￼

Naturally, when the original problem has been 
solved, we wonder if the solution still applies for 
variants of the problem. Some of these solutions, 
like the leader and the O(n(logn)2) solutions, de-
pend on certain characteristics of the problem  
like the ability to tell time. What if we took away 
these abilities? Below, I present some harder in-
stances of the 100 Prisoners puzzle and challenge 
you to find more efficient solutions for them.

E[X] =
n−1∑

i=1

E[Xi] =
n−1∑

i=1

(E[Yi] + E[Zi])

=
n−1∑

i=1

(
n

n− i
+ n

)
= n

2
− n+ nHn−1

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

n

n− i+ 1

= n

n∑

i=1

1

i
= O(n log n)

n− i+ 1

n

35



Variations of the 100 Prisoners 
and a Light Bulb Puzzle

We assume for Problems 1 and 4 that the following 
are true: All prisoners are allowed to discuss their 
strategy on the first day. On the next day, they are 
each placed in an isolated cell with a window. The 
interrogation room contains a single light bulb 
that is initially switched off.

1.	 Blue and Red Cells: Each isolated cell is either 
painted completely blue or completely red. 
In addition to declaring that all prisoners 
have been interrogated, a confident pris-
oner must also correctly state the number 
of prisoners in red cells and the number of 
prisoners in blue cells [1].

Problem 1 is easily solvable using a strategy simi-
lar to the “leader” strategy if two light bulbs are in 
the interrogation room instead of one. However, 
with only one light bulb, is it possible to devise an 
O(n2) time algorithm?

2.	 Light Bulb May Be Off: We assume that the 
light bulb in the interrogation room may be 
turned on or off initially (i.e. before the first 
prisoner enters) [2].

If prisoners still have windows in their rooms, 
then the “leader” algorithm still provides an O(n2)  
solution to Problem 2 because the leader can just 
record all the times the light is on starting from the 
second day. The first non-leader prisoner to enter 
the interrogation room must be unique; therefore, 
on the first day, he can simply leave the light on if 
it is on or turn it on if it is off. All other prisoners 
behave as before. However, this problem becomes 
trickier if prisoners do not have windows in their 
individual cells because the prisoners have just 
lost their ability to keep track of time.

3.	 No Windows: We keep the condition pre-
sented in Problem 2. Now, prisoners may 
no longer keep track of how much time has 
passed because they are placed in isolated 
cells with no windows and no way to keep 
time [2].

This variation is harder because now the leader 
does not know how many days have passed and 
how many prisoners were interrogated before she 
enters the room. She could be the first prisoner 
to enter the room and the light bulb could have 
been initially on. In this case, her count of the 
number of interrogated prisoners would be off 
by 1. Can we still achieve an O(n2) algorithm by 
tweaking the “leader” protocol (the answer is yes 
but how)? The harder question is can we tweak 
the O(n(logn)2) solution to apply to this problem?

4.	 Couple of Prisoners: Let us assume that all 
prisoners arrested were couples. Therefore, 
among the 100 prisoners, there are 50 dis-
tinct couples (no person may be a member 
of more than one couple). The warden then 
divides each couple. One member of the 
couple is placed in Group A and the other is 
placed in Group B. On each day, the warden 
chooses uniformly at random with replace-
ment someone in Group A to interrogate in 
the morning. In the afternoon, on the same 
day, the warden chooses randomly someone 
from Group B to interrogate. Couples may 
not switch who they’re partnered with. In 
addition to declaring that all 100 prisoners 
have been interrogated, a prisoner must also 
correctly claim that all couples have been 
interrogated (at least once) on the same day 
[4].

There exists a solution that assigns each couple to 
a particular day. The person from Group A may 
only turn the light on when they are called on their 
assigned day. Otherwise, they turn the light off. If 
the person from Group B is also called on their 
assigned day, they will leave the light on if it is on 
from the morning. If the person from Group B is 
called on any other day, they will turn the light off. 
A leader chosen from Group A counts the number 
of unique days she sees a light on when she enters 
the room. This indicates that both members of a 
couple were interrogated on their assigned day 
(the previous day). What is the expected runtime 
of this solution? Does this problem still have a so-
lution if the prisoners are placed in isolated cells 
without windows?
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Trading Light Bulbs for Time

For this last problem, I want to see how much 
more power we must give to the prisoners in order 
to bring the expected number of days in jail down 
to O(n). The riddle I created below trivially must 
have an O(n) solution (answer in the appendix). 
Giving prisoners more light bulbs enables them
to tell each other more information in a shorter 
amount of time. But the more interesting ques-
tion, now, is can the prisoners escape with less 
than 6 light bulbs?

5.	 Prisoners and Vindictive Wardens: The same 
100 prisoners are ushered into prison by 
the same warden. They will be placed in 
isolated cells with windows starting tomor-
row. Except now, the warden tells them that 
the interrogation room has 6 light bulbs in a 
row, and she will interrogate each prisoner at 
most twice. Prisoners are chosen uniformly 
at random from those that have not yet been 
interrogated twice. The prisoners were tre-
mendously happy at this news because they 
are guaranteed freedom after at most 200 
days. The warden cackles and tells them that 
there is a catch. This time, when a prisoner 
enters the interrogation room, he is asked, 

“Are you the last unique prisoner?” The last 
unique prisoner must declare, “Yes.” Every 
other prisoner must declare, “No.” Once a 

“Yes” is correctly declared, everyone is imme-
diately freed. If someone declares incorrectly, 
everyone will be executed. How can they 
guarantee their freedom?

As a hint, the solution to this problem critically 
depends on the prisoners being able to tell time. 
If the isolated cells do not contain windows, what, 
then, is the minimum number of light bulbs need-
ed in order to guarantee the prisoners’ freedom?

Is the Solution Optimal? 
￼￼
I hope that you will take what I have written here 
to heart so that the next time you look at a puzzle, 
don’t just find a right solution; find the optimal 
solution.

Appendix

Answer to “Prisoners and Vindictive Wardens”: 
Despite having 6 light bulbs, the answer to this 
riddle is not as simple as encoding the number 
of prisoners who have been interrogated twice, 
which we could if we had 7 light bulbs. But we 
may use a similar scheme. Let “on” represent 1 
and “off ” represent 0, with the rightmost light 
bulb representing the smallest bit. On the i-th day, 
the prisoner who enters the interrogation room 
knows at least      unique prisoners must have al-
ready been interrogated by the pigeonhole prin-
ciple. Then, using this fact and the light bulbs, we 
may implement a counting system. Let Δi be the 
number represented in bits by the 6 light bulbs 
on the i-th day. Every prisoner knows how many 
times he has been interrogated. If the prisoner is 
entering the interrogation room the first time, he 
will check whether      + Δi is 99. If so, then he 
declares, “Yes.” If not, he changes the light bulbs 
such that           + Δi+1 =      + Δi +1 and declares “No.” 
If the prisoner is entering the room for the second 
time, he will change the light bulbs such that
         + Δi+1 =      + Δi  and declare “No.” We may see 
this algorithm works for any n prisoners because 
0 ≤ Δi  ≤      + 1. Never is Δi  >      + 1 because that 
means      + Δi > n, a contradiction. Furthermore, 
never is Δi < 0 because we would contradict the 
pigeonhole principle. For any n prisoners, this 
scheme would work given                        light bulbs.
May we achieve a better scheme using fewer light 
bulbs?
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Genes, Chinese Restauarants 
& Textual Analysis

From genes to Chinese        
Restuarants...

In [6], Warren Ewens introduced what would 
become a foundational tool in the analysis of 
genetic data, a probability distribution that is 

now known as Ewens' Sampling Formula.  The 
nearly two decades that had passed since the 
1953 discovery of the double-helix structure of 
DNA had seen the confirmation the mechanism 
of DNA replication and the discovery of the cod-
ing relation between DNA, RNA, and proteins - 
in particular the system of triplets of nucleotide 
pairs, called codons, and their relationship to ami-
no acids - and thus the discovery of the genetic 
code.  By the end of the 1960's, new techniques of 
protein sequencing made it possible to confront 
the mathematical models of gene frequencies 
developed by R. A. Fisher, Sewall Wright, J. B. S. 
Haldane, and their successors with data: now, giv-
en a set of sample of n proteins from a population, 
it was possible to count how many distinct alleles 
appeared, and at what frequencies.  This data was 
encoded in the form of an allelic partition, an n-
tuple of non-negative integers (a1,...,an), where aj 
is the number of distinct alleles that appear ex-
actly j times in the sample, so that

whereas

is the number of distinct alleles observed.  Some 
examples of allelic partitions, from popula-
tion geneticists' favorite organism, the fruit fly 
Drosophila, appear in the table below.  Thus, for 
example, for Drosophila willistoni, in a sam-
ple of n = 582 individuals, there were k = 7 al-
leles, of which the most frequent appeared 559 

times, the next most frequent alleles appeared 
in 11 and 7 individuals, respectively, one al-
lele was observed in two individuals, and 3 
alleles appeared in exactly one individuals.   
 
Looking at amino-acid differences (which, due 
to the transcription of proteins from DNA, cor-
respond to different alleles) in haemoglobin mol-
ecules across a variety of mammals [9], Mootoo 
Kimura argued that the rate of substitution - the 
rate at which new alleles arising by mutation in a 
single individual replace the ancestral allele across 
the entire population - was much higher than was 
consistent with the neo-Darwinist theory that 
had emerged over the past few decades: Kimura's 
calculations showed that a nucleotide was substi-
tuted roughly every two years, much faster than 
the once every 300 years predicted by Haldane 
[8] a decade earlier!  This discovery led Kimura to 
propose his neutral theory of molecular evolution, 
which argued that "non-Darwinian" forces (the 
randomness in birth and death in small popula-
tions composed of individuals whose total life-
time reproductive output is on average equal) as 
opposed to natural selection (some types have a 
higher average total reproduction rate)  was the 
primary cause of genetic diversity, sparking a 
fierce debate that would rage throughout the fol-
lowing decades.
 
Kimura complemented his neutral theory with 
what we now call the infinite alleles model: mu-
tations happen at approximately a constant rate, 
and given the typical length of genes, e.g. from an 
average 1600 nucleotide pairs per gene for yeast, 
up to an average of 16,600 for mammals [13], the 
probability of seeing the same mutation twice 
is very small.   As a first approximation, we can 
thus assume that individuals acquire mutations 
at a constant per capita rate μ, and with every 

n∑

j=1

jaj = n,

k =
n∑

j=1

aj
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 every new mutation, the mutant individual has 
new allelic type that has never appeared previ-
ously.  To complete the description of the model, 

new mutation, the mutant individual has new al-
lelic type that has never appeared previously.  To 
complete the description of the model, we need to 
describe the population dynamics: we'll assume 
a population of fixed size N, and assume that 
each individual has a "reproductive clock" that 
rings at constant rate 1.  When that clock rings, 
the individual produces an offspring of the same 
type, which replaces another individual chosen 
uniformly at random from the whole popula-
tion.  If this all seems a bit artificial, don't worry: 
although to prove this -- or even be precise about 
the necessary and sufficient conditions -- is a bit 
beyond of the scope of this article, the results 
below continue to hold provided the popula-
tion is more or less of fixed size, everybody in-
teracts with everybody, individuals give birth to 
relatively few offspring at any given time, and, es-
sentially, when no type has a selective advantage.   
 
Ewens devised his sampling formula as a robust 
statistical test of Kimura's infinite alleles model, 
which, given an allelic partition (a1,...,an) in a sam-
ple of size n, would give the maximum likelihood 
estimate of the total population mutation rate, 
θ=Nμ, and the probability of seeing that particu-
lar partition under Kimura's neutral hypothesis: 

      Theorem 1 [Ewens' sampling formula] The 
probability of observing the allelic parti-
tion (a1,...,an) in a population of size N that 
evolves according to Kimura's infinite alleles 
model with a mutation rate of μ is

We'll give a proof of this, but instead of Ewens' 
original, we'll give an easier one that takes advan-
tage of more recent perspectives and thus makes 
explicit the broad connections of the result (many 
different proofs have been given since Ewens' 
original paper e.g. [4] and [5] give two other ap-

proaches to the one taken here).  In fact, we'll ac-
tually prove
The probability of a sample of $n$ individuals 
containing of $k$ distinct allelic types which oc-
cur  in $n_{i} > 0$ individuals ($i=1,\ldots,k$, $n

proaches to the one taken here).  In fact, we'll ac-
tually prove

      Theorem 1' The probability of a sample of 
n individuals containing of k distinct allelic 
types which occur in ni > 0 individuals 
(i=1,...,k, n1+...+nk=n) is

Theorem 1 then follows by a bit of combinato-
rics: an allelic partition (a1,...,an) corresponds to 
the situation where               and exactly aj of 
the values ni are equal to j; all such choices for 
the ni are equally probable (with the value given 
by (2)), so to compute the probability of the al-
lelic partition, we need only count the number of 
possible sequences, and multiply by (2), which, 
under the assumed allelic partition, becomes 

 
To count the number of ways of partitioning n 
items into groups of size n1,...,nk, such that there 
are aj groups of size j, we could start by imagin-
ing listing the n items, and then taking the first 
n1 and assigning them to the first group, the next 
n2 to the second group, etc. There are n! ways of 
forming our initial list, but this over-counts  the 
number of partitions: for example, no matter how 
many ways we arrange the first n1 items (which 
can be done in n1! ways), they are in the same 
group, and similarly for each of the ni.  Thus, we 
should divide n! by                                      to avoid    
this over counting.  Further, if, say ni = nj, we could 
swap the corresponding sets of elements from our 
list, and still have a partition into groups of size 
n1,...,nk.  By the same reasoning, if we rearranged 
any of the aj groups of size j, which can be done in 
aj! ways, we would have the same partition.  Thus, 
we must further divide by                 to get the actual 

n!

θ(θ + 1) · · · (θ + n− 1)

n∏

j=1

(
θ
j

)aj

aj!
. (1)

θk

θ(θ + 1) · · · (θ + n− 1)

k∏

i=1

(ni − 1)!. (2)

θk

θ(θ + 1) · · · (θ + n− 1)

n∏

i=1

((j − 1)!)aj . (3)

∑
n

j=1
aj = k

∏k
i=1

ni! =
∏n

j=1
(j!)aj

∏
n

j=1
aj!
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number of partitions: 

Multiplying this by (3) gives (1). 
 
Before turning to the proof of Theorem 1', let's 
look at some of the implications (and applica-
tions) of the sampling formula: first of all, let Kn be 
the (random) number of allelic types in a sample 
of size n.  Looking at (2), we see that the probabil-
ity of having k allelic types in a sample of size n is

where

is a well-known quantity, an unsigned Stirling 
number of the first kind.  Named after 18th century 
Scottish mathematician James Stirling, they count 
the number of distinct permutations of n objects 
with k cycles.   Using them, we can partition Ew-
ens' sampling formula into two components,

where only the first component depends on θ.  In 
particular, we can use the first piece as a maxi-
mum likelihood estimator for θ that depends only 
on the size of the sample and the number of dis-
tinct alleles in the sample:

so                    takes its maximum at the unique 
value of      satisfying

By the usual integral comparison argument (see 
appendix), we observe that                  , so that for a 
sufficiently large sample (too large to be very use-
ful in practice, unfortunately), we can make the 
approximation              .

Note also that

so    is the value for the (population) mutation 
rate such that the expected number of allelic            
types,             , is equal to the observed number of 
types, k.

Given the number of alleles in the sample, we can 
use the latter component,

as a test of neutrality independent of the mutation 
rate [16]: we can do a significance test by deter-
mining the probability of seeing the observed 
allelic partition given the observed number of 
alleles - if it's too low, we can safely reject the neu-
tral hypothesis.  More precisely, one can use the 
Ewens' sampling formula to determine the prob-
ability P of observing the sample heterozygosity,

that is, the probability that two individuals, drawn 
uniformly at random with replacement, have the 
same allelic type.  For example, in a sample of size 
50 that contains 3 allelic types, the heterozygosity 
can be shown to be always greater than 0.33;  (4) 
tells us that the probability that 0.33 ≤     ≤ 0.37 is 
less than 5% i.e. if we observed a sample with hete-
rozygosity less than 0.37, we would reject the neu-
tral model, and assume that selection was at work 
(values from [16]). Table 1 shows values of     and 
P for the Drosophila samples: only for the species 
tropicalis, with P = 0.130, would we fail to reject 
the neutral hypothesis (when working with data, 
it's important to think like a scientist - we don't 
prove our hypotheses true or find counterexam-
ples, but must content ourselves with rejecting -- 
or failing to reject - them on the basis of statistics).  
 
Note also, that once we've accepted the neutral 
hypothesis and inferred the value of the popu-
lation mutation rate, θ, we have a complete un-
derstanding of not just the sample, but  of the 
relative abundance of all the allelic types in the 
population from which the sample came.  In par-
ticular, the long-run stationary behaviour of the 

n!∏
n

j=1
(j!)ajaj!

.

P (Kn = k) =
S(n, k)θk

θ(θ + 1) · · · (θ + n− 1)
,

S(n, k) :=
∑

{(n1,...,nk):n1+···+nk=n}

k∏

i=1

(ni − 1)!

P ((a1, . . . , an)) = P (Kn = k)P ((a1, . . . , an)|Kn = k)

=
S(n, k)θk
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1

S(n, k)
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(
1

j
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dθ
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k
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1
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θ̂
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.

k ∼ θ̂ lnn
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k

lnn

θ̂

E [Kn] =
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k=1

kS(n, k)θk

θ(θ + 1) · · · (θ + n− 1)
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θ d
dθ
θ(θ + 1) · · · (θ + n− 1)
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θ
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(
j
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,
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population from which the sample came.  In par-
ticular, the long-run stationary behaviour of the 
whole population can be described by a Poisson-
Dirichlet process with parameter θ, or by the 
closely related GEM (Griffiths-Engen-McClos-
key) distribution, which gives the proportions of 
each type in decreasing order (the most frequent 
type becomes allele A1, the next most frequent A2, 
and so-on).  A full discussion of these is beyond 
the scope of this article, but we refer the interested 
reader to the extremely good presentations in  [7, 5]. 
 
Now that we're (hopefully) convinced that Ewens' 
sampling formula is useful, let's turn to its proof.  
To start, let's describe Kimura's model in a precise 
manner: let Xi(t) be the number of individuals of 
allelic type Ai, i=1,2,..., so

and assume that (X1(t), X2(t), ...) is a continu-
ous time Markov process, such that in the time 
interval [t,t+ Δt), we can have two possible types 
of events: either some individual of type i gives 
birth, and its offspring replaces an individual of 
type j (leaving the population size N unchanged), 
or an individual of type i incurs a mutation, which 
causes it to become a new, previously unseen type.  

The transition probabilities for these events are

where i* is the smallest value of i such that no in-
dividual of type Ai has appeared previously, and 
o(Δt) represents any quantity such that

Note that every type i has equal probability of giv-
ing birth, and each type j has equal chance of be-
ing replaced, which is what makes this a neutral 
model.

In Figure 1, we give a graphical representation 
of the infinite alleles model for a population of 
size N = 6.  We imagine lining up the individu-
als according to some arbitrary (but fixed) order, 
with lines below them on which we will track the 
birth, death, and mutation events.   When an in-
dividual's reproduction clock rings, we draw an 
arrow from their line, pointing at another uni-
formly randomly chosen line; the individual at 
the tip of the arrow is replaced by the offspring 

t = o

t

Figure 1: A graphical representation of the infinite alleles model, with the coalescent process 
superimposed (red).  Arrows represent birth/replacement events, whereas one of the "trian-
gular" species experiences a mutation, causing it to become a new "parallelogram" type.

∞∑

i=1

Xi(t) = N,

P (Xi(t+∆t) = Xi(t) + 1, Xj(t+∆t) = Xi(t)− 1)

=
Xi(t)Xj(t)

N
∆t+ o(∆t), or

P (Xi(t+∆t) = Xi(t)− 1, Xi⋆(t+∆t) = 1)

= µXi(t)∆t+ o(∆t),

lim
∆t↓0

o(∆t)

∆t
= 0.
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of the individual at the tail of the arrow.   When 
a mutation occurs (represented in Figure 1 by 
a small bolt of lightning), the individual at that 
position becomes a new type.  Such figures are 
especially useful, as they indicate how we can 
change our perspective: instead of thinking about 
individuals, we can think about the lines of an-
cestry that trace back individuals to their par-
ents, giving us a genealogical tree e.g. in Figure 
1, the red lines trace the genealogy the sample 
consisting of the three "circle" types (who de-
scend from a common ancestor at time t = 0) and 
the "parallelogram" (who arises from a mutation 
to a "triangle", but, if we only have access to the 
sampled "parallelogram", we can't infer this, so 
the genealogy stops at the mutation).  In popula-
tion genetics, this ancestral process is called the 
coalescent.  It was introduced by J. F. C. Kingman 
in three papers published in 1982 ([10, 12, 11]) 
that revolutionised the mathematical approach 
to population genetics: instead of looking at the 
forward time evolution of the entire popula-
tion, one could trace back the ancestry of small 
samples, an approach that for neutral models is 
equally powerful, but mathematically quite sim-
ple.  Coalescents for models with natural selec-
tion, however, remain an active area of research! 
 
We'll use a coalescent approach to prove (2).   Re-
call that we started with a sample of n individuals, 
which contains representatives of k allelic types, 
such that there are ni individuals with allele Ai, 
i=1,...,k.  As we look backwards in time, two types 
of events can occur: two lines with the same allelic 
type can merge into a common ancestor (i.e., one 
is the parent of the other and gave birth at that 
moment), or an allele that occurs exactly once dis-
appears - when a mutation occurs, we get exactly 
one representative of the new type,  we but loose 
all information about their ancestry (if we only 
have the parallelogram, we have no way of know-
ing that it was previously a triangle...)  Unlike the 
forward-time population dynamics, both types of 
events reduce the number of lines in our sample by 
one, so we only need to trace back at n such events 
to determine the ancestry of our entire sample. 
 
We can obtain a particularly simple representation 
of our process by ignoring the exact times in the 
past at which events occurred, and only consider 
events that change the genealogy of our sample.   

In such an event, that occurred in the time inter-
val [t,t+ Δt), when there were m ancestors (mi will 
allele Ai, i=1,...,j) to the lines in our sample, either

1.	 one of the mi individuals ancestral to the 
sample gave birth, and replaced an indi-
vidual not currently in the sample, an event 
with probability 

     or,
2.	 one of the N-m lines not in the sample was 

hit by a mutation, with probability (N-m)μΔt 
+ o(Δt) = (N-m) θΔt/N + o(Δt), and gave rise 
to a new allelic type that is in our sample.

If we condition on an event happening in [t,t+ Δt), 
it is of the first type with probability

 
and of the second type with probability 

 
Dividing the numerators and denominators by 
(N-m)Δt/N and passing to the limit as∆t → 0 , we 
arrive at a discrete time Markov chain in which, 
when we have m lines such that mi carry allele Ai, 
the number of lines increase by one with prob-
abilities

for mergers and mutations, respectively. 
	  
With this reduced Markov chain, the proof of Ew-
ens' sampling formula is quite easy:

Proof [of (2)]: If our sample contains ni individu-
als of type i=1,...,k, we must have first had the 
first individual of that type appear, with prob-
ability proportional to θ, and then, that individ-
ual gave birth with probability proportional to 
1, then, one of the two individuals with allele Ai 
gave birth with probability proportional to 2, etc. 
Continuing inductively, we arrive at ni individu-
als when one of the ni - 1 individuals with allele 
Ai gives birth.  That gives us the numerator of (2), 

mi

(
1−

m

N

)
∆t+ o(∆t),

mi
N−m

N
∆t+ o(∆t)

θN−m

N
∆t+

∑
j

i=1
mi

N−m

N
∆t+ o(∆t)

,

θN−m

N
∆t+ o(∆t)

θN−m

N
∆t+

∑
j

i=1
mi

N−m

N
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.

mi

θ +m
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θ

θ +m
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To complete the proof, we note that inde-
pendent of the type of event, when there are 
m individuals ancestral to the sample, the de-
nominators of the probabilities in (5) are all  
(θ+m). As we go from having no individu-
als to having n-1 individuals (the last event 
we record is the arrival of the nth line in 
our sample), the denominator is always 
θ(θ+1)...(θ+n-1), which gives us (2).                    ☐

In [1], David Aldous gave an amusing interpreta-
tion of the simplified Markov chain given by (5), 
which he called the Chinese Restaurant Process: 
Aldous imagined an idealised Chinese restaurant, 
with infinitely many tables, each with an unlim-
ited supply of chairs, and a never-ending supply of 
hungry diners who arrive, but never leave.  When 
the diners arrive, they either choose to sit at one 
of the currently occupied tables, with a probabil-
ity proportional to the number of people already 
seated ("the more, the merrier"), or with probabil-
ity θ, they start a new group by sitting at a cur-
rently unoccupied table. By contrast, we could 
imagine an English Restaurant Process, where 
everybody entering sits down at a vacant table, 
but that would be much less interesting.

...and beyond

Although we've looked at Ewens' sampling 
formula in the context of population ge-
netics, it's use extends far beyond.  Indeed, 

(2) was derived independently, in the context of 
abstract nonparametric Bayesian mixture models 
by Charles Antoniak in [2].   The recent rediscov-
ery of Antoniak's paper by people working in the 
field of machine learning probably affects you on 
a daily basis -- if you do keyword searches on the 
internet - via an algorithm known as latent Dir-
ichlet allocation.  When you do a keyword search, 
you're usually looking for articles on a given topic. 
We choose keywords because we expect them to 
occur with high probability within documents on 
the desired topic. The power of latent Dirichlet 
analysis is that it's often possible to identify dis-
tinct topics without knowing what the topic is, 
nor knowing the meaning of the keywords, some-
thing that is increasingly valuable as the number of 
pages of text available online grow far faster than 

humans can read them and assign them to topics! 
 
To understand how this works, lets make an 
analogy with genetics.  We'll imagine that all the 
words in each topic is a distinct population, and 
each keyword is an allele.   The relative abun-
dance of the keywords is what defines a topic (e.g. 
an article about genetics is much more likely to 
contain words like "allele", "nucleotide", "protein", 
or "Drosophila", and in higher abundance than 
an article on maths, which will have words like 
"lemma", "theorem", and "proof ".  Articles like this 
one, on mathematical population genetics might 
confuse things a little, but that's a problem easily 
solved by letting them define a new topic).  When 
we take a document from a topic, we get a sam-
ple of alleles from that topic.  Much as we could 
use Ewens’ sampling formula, together with small 
samples of individuals, to reconstruct the popula-
tion abundances, we can use it, along with sam-
ple texts, to reconstruct the abundances of key-
words that define the topic, and even determine 
the most probable assignment of a text to topics 
-- for example, this article might be assigned 60% 
genetics, and 40% maths, or vice versa - without 
ever having thought about the content at all!   See 
[3] for a readable survey of such applications.  

In addition to further refinements and extensions 
of the sampling formula for applications in genet-
ics and machine learning, Ewens' work has also 
inspired a growing subfield that investigates ran-
dom partitions and other objects at the interface 
of probability and combinatorics, a wonderful 
demonstration of the fruitful interaction between 
mathematics and applications, in which the ben-
efits run in both directions.  A comprehensive list 
of references is impossible, but an excellent point 
of departure is [14]. Perhaps the reader will be in-
spired to make their own contribution!
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Appendix
To show that                   in the above, our aim is to bound the sum by an integral which we know how to 
evaluate. Noting that

whereas

and

we get the required bounds.

k ∼ θ̂ lnn
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θ̂ + x− 1
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The solutions to cubic and quartic equations 
were found by Cardano and Ferrari respectively 
in the sixteenth century. Cardano solved the de-
pressed cubic equation, x3 = ax + b, by splitting 
the variable x as, x = u + v, and then expanding 
the resulting expression; while Ferrari solved the 
depressed quartic equation, x4 + ax2 + bx + c = 0, 
by rearranging the terms in the quartic equation 
on either side of equality sign and adding some 
terms on both sides, such that each side becomes 
a perfect square. Since these methods are well 
known, we don’t discuss them further and readers 
are advised to see the literature [1].

However we are curious to know whether the 
quartic equation can be solved in a manner Car-
dano solved the cubic, i.e., by splitting the variable 
x as, x = u + v, and then expanding the resulting 
expression. Let us make an attempt here.
Consider the depressed quartic equation,

x
4 + ax

2 + bx+ c = 0       (1)
where a, b, and c are coefficients in (1). Substitut-
ing x = u + v in (1) and expanding it we obtain,

u
4 + 4u3

v + 6u2
v
2 + 4uv3 + v

4 + au
2

+ 2auv + av
2 + bu+ bv + c = 0

Notice that the above equation can be rearranged 
such that the left-hand-side is made a perfect 
square as,

(u2 + 2uv)2 = −(2v2 + a)

(
u
2 +

4v3 + 2av + b

2v2 + a
u+

v
4 + av

2 + bv + c

2v2 + a

)
 (2)

The quadratic term in u in the right-hand-side of 
(2) also can be made a perfect square as:

[
u+

4v3 + 2av + b

2(2v2 + a)

]2

if the condition,
(4v3 + 2av + b)2

4(2v2 + a)
− (v4 + av

2 + bv + c) = 0
		

		     (3)

is satisfied. Further simplification of this condi-
tion (3) leads to the following cubic equation in v2

as,
v
6 + (a/2)v4 − cv

2 + [(b2 − 4ac)/8] = 0 (4)

The cubic (4) in v2 is known as resolvent cubic 
equation, and solving it results in three values of 
v2 or six values of v. Now equation (2) becomes a 
perfect square as,

(u2 + 2uv)2 = −(2v2 + a)[u+
4v3 + 2av + b

2(2v2 + a)
]2 (5)

Taking square root of (5) and rearranging the 
terms results in the following two quadratic equa-
tions.

u
2 + [2v ∓

√
−(2v2 + a)]u∓

√
−(2v2 + a)

[
4v3 + 2av + b

2(2v2 + a)

]
= 0     (6)

The two equations in (6) contain ∓ signs at two 
places; the first equation has − sign at both plac-
es, and the second one has + sign at both places. 
Solving these quadratic equations, we obtain four 
values of u for each value of v. Four solutions of 
quartic equation (1) are then obtained using x = 
u + v.

Let us solve one numerical example. Consider the 
following depressed quartic equation.

x
4 + 3x2

− 6x+ 10 = 0

The resolvent cubic (4) in v2 is obtained as, 
v6 + 1.5v4 − 10v2 − 10.5 = 0; 

and after solving it, we get three values of v2 as, 3, 
−1, −3.5, and six values of v as, ±1.732050807568, 
±i, ±1.870828693387, where i2 = −1. Choosing v = 
i, the two quadratic equations in (6) are obtained 
as:

u
2 + iu+ 1 + 3i = 0; u2 + 3iu− 1− 3i = 0.

Solving above equations, we get four values of u 
as: 1 −2i, −1+ i, 1, and −1 −3i. Using the relation, 
x = u + v, we obtain four solutions of the quartic 
equation as: 1 − i, −1 + 2i, 1 + i, and −1 − 2i. No-
tice that one can choose any of the six values of v 
to solve the quartic equation. Interested readers 
may verify by using other values of v to obtain the 
solutions.
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0. Introduction

Sequences  are  important  in  many  branches  of  
mathematics.  The  sequence  of  partial  sums,  for 
example,  determines  the  convergence  of  an  
infinite  series.  Analysis  courses  abound  with 
sequences of functions and the various ways in 
which they converge. Number theorists study the 
Fibonacci  and  Lucas  sequences  among  many  
others.  While  the  recursive  definition  of  the 
Fibonacci sequence involves two prior terms to 
define the  n-th term, you will see that a slightly 
altered version only requires one prior term  –  an 
esthetically pleasing and surprising fact! Guest 
appearances by π and e in the article will be ap-
preciated by lover of mathematics at all levels.

In  this  article,  we  present  several  recursive-
ly  defined  sequences  and  obtain  interesting 
results  that  involve  relatively  simple  tools  such  
as  limits  and  asymptotic  behavior.  Students 
encounter asymptotic behavior  in a first year cal-
culus course  when they take ratios of dominant
terms to determine the limit of a ratio-
nal function when x approaches infinity.

The  only  tool  in  this  paper  unfamiliar  to  
math  freshmen  is  Stirling’s  Approximation 
which can be explained quite readily.

If any readers sponsor undergraduate theses, 
this article should be a source of interesting 
problems for future projects with students.

I. Definition

Let the sequence {xn} be defined by the seed 
x1= x2 = 1, and the recursive relation

xn+2 = xn +
1

xn+1 	     (1)
The first ten terms are 

1, 1,
2

1
,
3

2
,
8

3
,
15

8
,
48

15
,
105

48
,
384

105
,
945

384     (2)

For reasons that will be apparent later, we do not 
reduce the fractions in (2) to lowest terms. Now 
multiplying both sides of (1) by xn+1 yields

xn+1xn+2 = xnxn+1 + 1 	     (3)

Letting  f(n) =  xnxn+1, (3) becomes  f(n+1) = f(n) 
+ 1. Since  f(1) =  x1x2 = 1, we find that f(n) =  n, 
implying that xnxn+1 = n. It follows that

xn+1 =
n

xn

	     (4)
In other words, the sequence defined by  (1) has a 
simpler recursive relation  (4) in which each 
term depends solely on the preceding term. Note 
that the first ten terms satisfy the new recursion. 
We use (4) to write another recursive formula 
from which the sequence may be obtained 
(with the seed x1= x2 = 1). We have, using (4)
xn+2 =

n+ 1

xn+1

=

(
n+ 1

n

)
xn , orxn+2 =

(
n+ 1

n

)
xn

     (5)

II. Several Theorems

As a consequence of (5), we have the following 
theorem.

Theorem 1: limx→∞

(
xn+2

xn

)n

= e

Proof: By (5), we have 
(
xn+2

xn

)n

=

(
1 +

1

n

)n

, which 
approaches e as n goes to infinity.  ■

We  now  find  the  closed  form  for  the  sequence,  
using  (4).  The  two  seed  terms  will  be 
omitted, but they follow the pattern to be estab-
lished.

x3 =
2

x2

=
2

1
=

(1!)222

2!

x4 =
3

x3

=
1 · 3

2
=

1 · 2 · 3

22
=

3!

(1!)222

x5 =
4

x4

=
2 · 4

1 · 3
=

(2 · 4)2

1 · 2 · 3 · 4
=

(2!)224

4!

x6 =
5

x5

=
1 · 3 · 5

2 · 4
=

1 · 2 · 3 · 4 · 5

(2 · 4)2
=

5!

(2!)224

x7 =
6

x6

=
2 · 4 · 6

1 · 3 · 5
=

(2 · 4 · 6)2

1 · 2 · 3 · 4 · 5 · 6
=

(3!)226

6!

x8 =
7

x7

=
1 · 3 · 5 · 7

2 · 4 · 6
=

1 · 2 · 3 · 4 · 5 · 6 · 7

(2 · 4 · 6)2
=

7!

(3!)226

x9 =
8

x8

=
2 · 4 · 6 · 8

1 · 3 · 5 · 7
=

(2 · 4 · 6 · 8)2

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8
=

(4!)228

8!

Table 1

Clearly, the closed form of xn will depend on the 
parity of n.
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Case 1: n = 2k + 1. Then x2k+1 =
(k!)222k

(2k)!            (6)

Case 2: n = 2k. Then x2k =
(2k − 1)!

[(k − 1)!]222k−2              (7)

The  reader  is  reminded  that  two  functions  f(x)  

and  g(x)  are  called  asymptotic  if  lim
x→∞

f(x)

g(x)
= 1  

This does not imply that |f(x)  –  g(x)| is bounded, 
as can be seen by the pair of asymptotic functions  
f(x) =  x2+x  and  g(x) =  x2 whose absolute dif-
ference goes to infinity. We write  f(x) ~  g(x) to 
denote that  f  and  g  are asymptotic. The reader 
is also reminded of Stirling’s beautiful relation [1]

k! ∼

(
k

e

)k √

2πk 	     (8)

which we will use to obtain  asymptotic approxi-
mations  for  x2k  and  x2k+1.  We require the easily 
verified asymptotic relations (9) and (10).

(k!)2 ∼

(
k

e

)
2k

2πk
	     (9)  

(2k)! ∼

(
2k

e

)
2k

2
√

πk

      (10)

Using (9) and (10) have

x2k+1 =
(k!)222k

(2k)!
∼

(k/e)2k2πk22k

(2k/e)2k2
√

πk
=

√

πk

 
				        (11)

Obtaining an asymptotic approximation for x2k 
will be more difficult.

x2k =
(2k − 1)!

[(k − 1)!]222k−2
∼

(2k−1

e
)2k−1

√
2π(2k − 1)

(k−1

e
)2k−22π(k − 1)2k−2

∼
1

e
(
2k − 1

k − 1
)2k−1

√

4πk

22k−1π

=
1

e
(
2k − 1

2k − 2
)2k−1

2
√

k
√
π

=
1

e
(
2k − 1

2k − 2
)(1 +

1

2k − 2
)2k−2

2
√

k
√
π

∼ 2

√
k

π

The last asymptotic approximation made use of 

the fact that lim
x→∞

(
1 +

1

n

)n

= e

On the basis of these calculations, we have the fol-
lowing theorem.

Theorem 2: x2k ∼ 2

√
k

π
and x2k+1 ∼

√

πk

Letting  n  =  2k  in  (4),  we  have  x2kx2k+1=2k,  
which  is  consistent  with  the  above  theorem. 
Furthermore, Theorem 2 implies that lim

x→∞
xn = ∞.  

The  following corollaries  of Theorem 2 will 
be useful.

Corollary 1: lim
x→∞

x2k+1

x2k

=
π

2

Proof: By Theorem 2, we have x2k+1

x2k

∼

√

πk

2
√

k
π

=
π

2
. ■

Corollary 2: lim
x→∞

x2k+2

x2k+1

=
2

π

Proof:  x2k ∼ 2

√
k

π
 implies,  upon  replacing  k  by

k + 1,  that x2k+2 ∼ 2

√
k + 1

π .  Then 

x2k+2

x2k+1

∼

2
√

k+1

π
√

πk
=

2

π

√
k + 1

k
∼

2

π			   . ■

As a consequence of Corollaries 1 and 2, note that
lim
x→∞

xn+1

xn
 fails to exist. Moreover, by these  corol-

laries, there exists a positive integer,  K, such that 
for all k  >  K, one has  x2k+1 > x2k, while x2k+2< x2k+1 
. In other words,  from some point on, terms with 
odd index are greater than the terms immediately 
before them, while the reverse is true for terms 
with even index. Note that this strict alternation 
between increasing and decreasing behavior ap-
pears to be the case for the terms in (2) with the 
exception of the equality of the first two terms.

The next theorem requires the following Lemma 
which we state without proof.

Lemma 1: Let  a  and  b  be  positive  integers,  and  
let  p  be  a  prime  that  divides  b  but  does  not 
divide a. Then a/b is not an integer.

The reader is reminded that Bertrand’s Postulate 
[2] says that for  n  > 1, there is at least one prime 
p such that n < p < 2n.

Theorem 3: Let n > 3. Then xn is not an integer.

Proof: We have two cases depending on the par-
ity of  n. 

Case 1: n  = 2k  + 1, where  k  > 1. Then
 
by  (6), x2k+1 =

(k!)222k

(2k)!
. By  Bertrand’s  Postulate,

there  exists  a  prime  p  such  that  k  <  p  <  2k. 
Then  p  divides that denominator, but not the nu-
merator, of  x2k+1. Then by Lemma 1,  x2k+1 is not 
an integer.



Case 2: n = 2k, where  k  > 1.  
From Table 1, one has x2k =

1 · 3 · · · (2k − 1)

2 · 4 · · · (2k − 2) . Then 
2 divides the denominator, but not the numerator, 
of  x2k. Then by Lemma 1,  x2k is not an integer, 
and the theorem is proven.  ■

Let Pn = x1x2x3···xn, from which xn+1(Pn)2 = 
x1x1x2x2x3x3···xnxnxn+1.  Recall that (4) can be writ-
ten as xnxn+1 = n. Then we have xn+1(Pn)2 = n!.
We have proven the following theorem

Theorem 4:  Pn =

√
n!

xn+1
 ■		      (11)

The equations of Table 1, which were obtained 
from (4), imply that

x2k =
N2k

D2k

=
1 · 3 · · · (2k − 1)

2 · 4 · · · (2k − 2)				        (12)

x2k+1 =
N2k+1

D2k+1

=
2 · 4 · · · (2k)

1 · 3 · · · (2k − 1) 	     (13)

In light of (12) and (13), we turn our attention to 
the sequence of numerators {Nn}, whose first  few  
terms  are  1,  1,  2,  3,  8,  15,  48,  105,  384,  945.  
Since xn = Nn/Dn and xn+1 = n/xn, we  have Nn+1/
Dn+1 = nDn/Nn. As we are not reducing these frac-
tions, it follows that 

Nn+1 = nDn and Dn+1 = Nn     (14)

Note  that  the  terms  8,  15,  48,  105  and  384  
of  the  sequence  {Nn}  can  be  rewritten 1(32– 
1), 1(42– 1), 2(52– 1), 3(62– 1) and 8(72– 1), where 
the factors before the parentheses are consec-
utive  members  of  the  same  sequence.  This  
is  not  a  coincidence.  By  (14),  Nn+2= (n+1)
Dn+1= (n +1)Nn , implying that  Nn+4= (n+3)Nn+2 
=  (n + 3)(n + 1)Nn= [(n  + 2)2 –  1]Nn. 
We have proven the following theorem.

Theorem 5: Nn+4 = [(n+ 2)2 − 1]Nn. ■

By the second equation in (13), a similar identity 
holds for the sequence, {Dn}, of denominators.

We  turn  our  attention  to  the  sequence 
∞∑

n=1

1

xn
 

.  Replacing  n  by  n – 1  in  (1)  yields xn+1 = xn-1 
+ 1/xn in which case 1/xn = xn+1 - xn-1. Defining  
x0 = 0 enables us to sum  both sides  of  this  last  
equation  from  n = 1  to  n = m.  
Note  that 1/x1 = x2 = 1. We  obtain 

m∑

n=1

1

xn

=
m∑

n=1

(xn+1 − xn−1)  

Telescoping the  sum on  the  right gives xm + xm+1 
- 1. Thus we have proven the following theorem.

Theorem 6: 
m∑

n=1

1

xn

= xm + xm+1 − 1  ■	

Corollary 3: 
∞∑

n=1

1

xn
	diverges. 

Proof: Let  m  go to infinity in Theorem 6. Then 
use lim

n→∞
xn = ∞ which was established using 

Theorem 2.  ■

III. A related sequence

Let a new sequence {yn} be defined by the seed y1= 
y2= 1, and the recursive relation

yn+2 = yn+1 +
1

yn

    (15)

The first few terms are 1, 1, 2, 3,
7

2
,
23

6
,
173

42
.

Question 1: Find a recursive relation of the form 
yn+1 = g(yn, n) as was the case for  {xn} in section I, 
that is, a relation such as (4).

By (14), one sees that {yn} is strictly increasing, 
unlike the sequence {xn}. As a consequence, we 
have the following theorem.

Theorem 7: limx→∞
yn = ∞ . 

Proof: Since {yn} is strictly increasing, it must ei-
ther approach infinity or have a finite limit, say L.  
We  show  the  latter  is  impossible   by  contradic-
tion.  Assume  that lim

x→∞
yn = L < ∞ .  Then taking 

the limit of both sides of (14) as  n  goes to infinity 
yields the absurd equation L = L + 1/L. and we 
are done.  ■

The next theorem yields a result similar to The-
orem 6.

Theorem 8: 
m∑

n=1

1

yn
= ym+2 − 1

Proof: By  (14), 1/yn = yn+2 - yn+1. Then
 m∑

n=1

1

yn
=

m∑

n=1

(yn+2 − yn+1)
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which  telescopes  down  to ym+2 - 1.  ■

Corollary 4: 
∞∑

n=1

1

yn
diverges.

IV. Another sequence whose 
recursive definition can be 
simplified

Let the sequence {xn} be defined by the seed 
x1= x2 = 1, and the recursive relation

xn+2 = xn+1 + 2xn     (15)

which is a variant on the recursive relation of the 
Fibonacci sequence. The first few terms are 

{1, 1, 3, 5, 11, 21, 43, 85, ...}     (16)

We have the following interesting theorem which, 
by the way, is the reason the above sequence 
is included in this paper.

Theorem  9:  The  sequence  defined  by  (15)  and  
the  seed  x1=  x2 =  1  satisfies  the  recursion
xn+1 = 2xn + (-1)n.

Proof:  We  use  a  variant  of  induction.  The  the-
orem  is  clearly  true  for  n = 1  and  n = 2.  Now 
assume  it  is  true  for  n = k  and  n = k + 1.  Then  
we  have xk+1 = 2xk + (-1)k and xk+2 = 2xk+1 + (-1)k+1. 

Using  (15)  and  the  preceding  two  equations,  
we  have xk+3 = xk+2 + 2xk+1 
= 2xk+1 + (-1)k+1 + 2[2xk + (-1)k] 
= 2(xk+1 + 2xk) + [(-1)k+1 + 2(-1)k] 
= 2xk+2 + (-1)k[-1+2] = 2xk+2 + (-1)k 

= 2xk+2 + (-1)k+2. ■
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