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Definition 1 (Group). A group G = (5, @) is defined by a set S and a function «: S x S — S with the following conditions.
(For g,h € S, we write g - h or simply gh as shorthand for a(g, h).)

1. Existence of identity. There exists an e € S such that for all g € S, ge = eg = g.
2. Existence of inverses. For all g € S, there exists h € S such that gh = hg =e.
3. Associativity. For all g, h,k € S, (gh)k = g(hk). (That is, a(a(g, h), k) = a(g, a(h, k)).)

The set S is known as the underlying set of G and the function « is known as the group operation of G. The order of G is
the size of the set underlying G and is denoted |G|. We say G is a finite group if its order is finite.
If we additionally have gh = hg for all g,h € S, then we say G is abelian.

Remark 1. The definition implies: (i) the identity element e is unique, (ii) for all g € S, there exists a unique h € S such
that gh = hg = e and we can denote it without ambiguity by g—'. Good exercise to check.

Example 1. Our main working example is the group Z;, where p is prime. The underlying set is {1,...,p — 1} and the
group operation is multiplication modulo p. Consider Z%: the set is {1,2,3,4} and 3-4 =2,2-3 =1, 37! =2, etc. Note that
it’s not obvious that the existence-of-inverse requirement of a group is satisfied, but it can be shown using Bézout’s identity
and the assumption that p is prime. The group is also abelian, since multiplication (modulo p) commutes.

Definition 2 (Subgroup). Let G := (S, a) be a group. We say T' C S forms a subgroup of G if:
1. T contains the identity element of G.
2. T is closed under «, i.e., g h € T — gh e T.
3. T contains inverses, i.e., g€ T = g '€ T.

This definition means that (T, «|r) is a group, where a|r: T x T — T is the natural restriction of a to T' defined by
alr(z,y) = a(z,y) for all z,y € T. We say (T, a|r) is a subgroup of G. Often the function « is implicit in which case it
is common to abuse language and identify the set S with the group G and the set T with the subgroup (T, «a|r). We write
H < G to mean H is a subgroup of G.

Definition 3 (Coset). Let G be a group and H be a subgroup. A coset of H in G is a set of the form gH = {gh | h € H}.
Theorem 1 (Lagrange). Let G be a finite group and H be a subgroup. Then the order of H divides the order of G.
Proof. The cosets of H partition G and each have size |H|. O

Definition 4. Let G be a finite group and g € G. The order of g in G, denoted o(g) or ord(g), is the minimum positive
integer r such that " = e. The subgroup generated by g, denoted (g), is the subgroup formed by the subset {e, g,..., g°@ =1}

Exercise: check o(g) is well-defined and that (g) indeed forms a subgroup.

Corollary 1. Let G be a finite group and g € G, then o(g) divides |G|, written o(g) | |G|.

Proof. Follows from Lagrange’s theorem because (g) is a subgroup of G of size o(g). O
An immediate corollary of the above is:

Corollary 2. Let G be a finite group and g € G, then g!¢! = e. In particular, this implies Fermat’s Little Theorem that for
all a € Zy,, where p is prime, we have aP~l =1.

Definition 5. Let n be a positive integer. We write Z,, := {0,1,...,n— 1}. We write Z,[X] for the set of polynomials with
coefficients in Z,,. Given 0 # P € Z,[X], the degree of P is defined to be the exponent of the largest power of X that has a
non-zero coefficient. We say = € Z,, is a root of P if P(z) =0 mod n.



Example 2. The set Z4[X] contains polynomials like 2X, X3, and 3X %04 X421, which are of degrees 1, 3, 100, respectively.
Note that 2 is a root of 2X and X3 in Z4; while 3X'9° 4+ X42 4+ 1 has no roots in Z4. Why?

Proposition 1. Let p be prime and P € Z,[X]. If P has degree d > 1, then P has at most d distinct roots in Z,.

Proof. Proof by induction on d. For d = 1, the polynomial must be of the form P = aX + j for some «, 8 € Z,, with o # 0.
Since p is prime, this means « is invertible and the only root to P(z) = 0 is —a~!3. For d > 1, suppose x is a root of P,
then use polynomial division to write P = (X — z)Q + r, where Q) € Z,[X] has degree d — 1 and r € Z,. Evaluating P at
X = x shows r = 0. Thus P = (X — z)Q. Suppose y € Z, is a root of P, then (y —z)Q(y) =0, s0 y =z or Q(y) =0 as
p is prime. (This uses the fact that if a prime divides a product of two integers, then it must divide at least one of them.)
Therefore, by the inductive hypothesis, y can take one of at most 1 + (d — 1) = d possible values since @) has degree d — 1.
This completes the proof. O

Remark 2. Proposition 1 can be false if p is not prime:
1. The polynomial 2X € Z4[X] has two distinct roots in Z,, namely, 0 and 2.
2. The polynomial X2 — 1 € Zg[X] has four distinct roots in Zg, namely, 1,3,5,7.

Definition 6. For positive integers a, b, lem(a,b) denotes the least common multiple of a and b.
Example 3. lem(6,21) = 42. lem(7,5) = 35. lem(35,7) = 35.
Lemma 1. Let G be a finite abelian group. Let g,h € G. Suppose o(g),o(h) are coprime, then o(gh) = lem(o(g),o(h)) =
o(g) - o(h).
Proof. Since o(g) and o(h) are coprime, it directly follows that lem(o(g),0(h)) = o(g) - o(h). Thus, it suffices to show
o(gh) = lem(o(g),o(h)). Write k := o(gh) and ¢ := lem(o(g), o(h)).
For k < ¢: we have
(gh)* =g¢*h* G abelian
=e-e=¢e ¢ is a multiple of o(g) and o(h)
so k < £ by the definition of k£ as the order of gh.
For ¢ < k: as above, we have
(gh)* = g* " =e (1)
and so
— ok _ (p—1\k
zi=g"=(h"")" €(g)N{h) (2)

Thus, Corollary 1 implies o(x) | o(g) and o(z) | o(h). But o(g) and o(h) are coprime so o(x) = 1, so = e. Therefore, the
definition of x means g¥ = e = h¥. Therefore, o(g) | k and o(h) | k (to see this, list powers of g, h in a sequence) so k is a
common multiple of o(g) and o(h) so k > £ by the definition of £ as the least common multiple. O

Remark 3. The coprimality assumption is crucial in Lemma 1. For example, consider the group Zs, i.e., {0,1} under
addition modulo 2. Then o(1+ 1) = 0(0) = 1 but lem(o(1),0(1)) = 2.

From Lemma 1, we deduce the next proposition. (Based on this StackExchange answer.)

Proposition 2. FEvery finite abelian group G has an lem-closed order set. That is, for all x,y € G, there exists z € G such
that

o(z) = lem(o(x), o(y))- (3)
Proof. Proof by induction on o(z)o(y). If o(z)o(y) = 1, then we can choose z = e. Otherwise, o(x)o(y) > 1 and we can wlog
factorize'

o(z) = AP, o(y) = BP', (4)
where P = p™ > 1 for some prime p coprime to A, B; and P’ | P.
Then /
o(zP)=A and o(y")=B (5)

By induction there exists z with o(z) = lem(A, B).
Now note that o(z#) = P and P is coprime to o(z) = lem(A, B). Therefore,

o(z2) =P -lem(A, B) Lemma 1
=lem(AP, BP') PP
=lem(o(x), 0(y)),
as required. O]

HMntuition: this pulls out a fixed prime p from o(z) and o(y) as many times as possible. Can wlog assume o(z) has at least one prime factor p
since o(z)o(y) > 1, and also that p appears at least as many times in the prime factorization of o(z) than in that of o(y), else can relabel = <> y.


https://math.stackexchange.com/questions/652875/why-does-a-multiplicative-subgroup-of-a-field-have-to-be-cyclic/652884#652884

Definition 7 (Cyclic groups and generators). Let G be a finite group, we say G is cyclic if there exists g € G, such that
o(g) = |G|. In this case, we call g a generator of G.

Theorem 2. For all p prime, Z;, is a cyclic group.
Example 4. In Z{, we have o(1) =1, 0(2) =4, 0o(3) =4, 0(4) = 2. So 2 and 3 are the only generators.

Proof. Let £ be the least common multiple of the orders of the elements of Z;. By Proposition 2, £ must be the order of some
element in Z;. Thus it suffices to show £ =p — 1.

By Corollary 1, p — 1 is a common multiple of the orders of the elements of Z;, so £ <p — 1.

Moreover, the definition of £ implies that every element of Zj is a root of P := X ¢ —1€Z,[X]inZ,. Since P is of degree
¢ and Zj has p — 1 distinct elements, we must have p — 1 < £ by Proposition 1.

Hence ¢ = p — 1 and the theorem follows. O



