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Definition 1 (Group). A group G := (S, α) is defined by a set S and a function α : S×S → S with the following conditions.
(For g, h ∈ S, we write g · h or simply gh as shorthand for α(g, h).)

1. Existence of identity. There exists an e ∈ S such that for all g ∈ S, ge = eg = g.

2. Existence of inverses. For all g ∈ S, there exists h ∈ S such that gh = hg = e.

3. Associativity. For all g, h, k ∈ S, (gh)k = g(hk). (That is, α(α(g, h), k) = α(g, α(h, k)).)

The set S is known as the underlying set of G and the function α is known as the group operation of G. The order of G is
the size of the set underlying G and is denoted |G|. We say G is a finite group if its order is finite.

If we additionally have gh = hg for all g, h ∈ S, then we say G is abelian.

Remark 1. The definition implies: (i) the identity element e is unique, (ii) for all g ∈ S, there exists a unique h ∈ S such
that gh = hg = e and we can denote it without ambiguity by g−1. Good exercise to check.

Example 1. Our main working example is the group Z∗p, where p is prime. The underlying set is {1, . . . , p − 1} and the
group operation is multiplication modulo p. Consider Z∗5: the set is {1, 2, 3, 4} and 3 · 4 = 2, 2 · 3 = 1, 3−1 = 2, etc. Note that
it’s not obvious that the existence-of-inverse requirement of a group is satisfied, but it can be shown using Bézout’s identity
and the assumption that p is prime. The group is also abelian, since multiplication (modulo p) commutes.

Definition 2 (Subgroup). Let G := (S, α) be a group. We say T ⊆ S forms a subgroup of G if:

1. T contains the identity element of G.

2. T is closed under α, i.e., g, h ∈ T =⇒ gh ∈ T .

3. T contains inverses, i.e., g ∈ T =⇒ g−1 ∈ T .

This definition means that (T, α|T ) is a group, where α|T : T × T → T is the natural restriction of α to T defined by
α|T (x, y) = α(x, y) for all x, y ∈ T . We say (T, α|T ) is a subgroup of G. Often the function α is implicit in which case it
is common to abuse language and identify the set S with the group G and the set T with the subgroup (T, α|T ). We write
H ≤ G to mean H is a subgroup of G.

Definition 3 (Coset). Let G be a group and H be a subgroup. A coset of H in G is a set of the form gH := {gh | h ∈ H}.

Theorem 1 (Lagrange). Let G be a finite group and H be a subgroup. Then the order of H divides the order of G.

Proof. The cosets of H partition G and each have size |H|.

Definition 4. Let G be a finite group and g ∈ G. The order of g in G, denoted o(g) or ord(g), is the minimum positive
integer r such that gr = e. The subgroup generated by g, denoted 〈g〉, is the subgroup formed by the subset {e, g1, . . . , go(g)−1}

Exercise: check o(g) is well-defined and that 〈g〉 indeed forms a subgroup.

Corollary 1. Let G be a finite group and g ∈ G, then o(g) divides |G|, written o(g) | |G|.

Proof. Follows from Lagrange’s theorem because 〈g〉 is a subgroup of G of size o(g).

An immediate corollary of the above is:

Corollary 2. Let G be a finite group and g ∈ G, then g|G| = e. In particular, this implies Fermat’s Little Theorem that for
all a ∈ Z∗p, where p is prime, we have ap−1 = 1.

Definition 5. Let n be a positive integer. We write Zn := {0, 1, . . . , n− 1}. We write Zn[X] for the set of polynomials with
coefficients in Zn. Given 0 6= P ∈ Zn[X], the degree of P is defined to be the exponent of the largest power of X that has a
non-zero coefficient. We say x ∈ Zn is a root of P if P (x) = 0 mod n.
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Example 2. The set Z4[X] contains polynomials like 2X, X3, and 3X100+X42+1, which are of degrees 1, 3, 100, respectively.
Note that 2 is a root of 2X and X3 in Z4; while 3X100 +X42 + 1 has no roots in Z4. Why?

Proposition 1. Let p be prime and P ∈ Zp[X]. If P has degree d ≥ 1, then P has at most d distinct roots in Zp.

Proof. Proof by induction on d. For d = 1, the polynomial must be of the form P = αX + β for some α, β ∈ Zp with α 6= 0.
Since p is prime, this means α is invertible and the only root to P (x) = 0 is −α−1β. For d > 1, suppose x is a root of P ,
then use polynomial division to write P = (X − x)Q + r, where Q ∈ Zp[X] has degree d − 1 and r ∈ Zp. Evaluating P at
X = x shows r = 0. Thus P = (X − x)Q. Suppose y ∈ Zp is a root of P , then (y − x)Q(y) = 0, so y = x or Q(y) = 0 as
p is prime. (This uses the fact that if a prime divides a product of two integers, then it must divide at least one of them.)
Therefore, by the inductive hypothesis, y can take one of at most 1 + (d − 1) = d possible values since Q has degree d − 1.
This completes the proof.

Remark 2. Proposition 1 can be false if p is not prime:

1. The polynomial 2X ∈ Z4[X] has two distinct roots in Z4, namely, 0 and 2.

2. The polynomial X2 − 1 ∈ Z8[X] has four distinct roots in Z8, namely, 1, 3, 5, 7.

Definition 6. For positive integers a, b, lcm(a, b) denotes the least common multiple of a and b.

Example 3. lcm(6, 21) = 42. lcm(7, 5) = 35. lcm(35, 7) = 35.

Lemma 1. Let G be a finite abelian group. Let g, h ∈ G. Suppose o(g), o(h) are coprime, then o(gh) = lcm(o(g), o(h)) =
o(g) · o(h).

Proof. Since o(g) and o(h) are coprime, it directly follows that lcm(o(g), o(h)) = o(g) · o(h). Thus, it suffices to show
o(gh) = lcm(o(g), o(h)). Write k := o(gh) and ` := lcm(o(g), o(h)).

For k ≤ `: we have

(gh)` =g`h` G abelian

=e · e = e ` is a multiple of o(g) and o(h)

so k ≤ ` by the definition of k as the order of gh.
For ` ≤ k: as above, we have

(gh)k = gkhk = e (1)

and so
x := gk = (h−1)k ∈ 〈g〉 ∩ 〈h〉 (2)

Thus, Corollary 1 implies o(x) | o(g) and o(x) | o(h). But o(g) and o(h) are coprime so o(x) = 1, so x = e. Therefore, the
definition of x means gk = e = hk. Therefore, o(g) | k and o(h) | k (to see this, list powers of g, h in a sequence) so k is a
common multiple of o(g) and o(h) so k ≥ ` by the definition of ` as the least common multiple.

Remark 3. The coprimality assumption is crucial in Lemma 1. For example, consider the group Z2, i.e., {0, 1} under
addition modulo 2. Then o(1 + 1) = o(0) = 1 but lcm(o(1), o(1)) = 2.

From Lemma 1, we deduce the next proposition. (Based on this StackExchange answer.)

Proposition 2. Every finite abelian group G has an lcm-closed order set. That is, for all x, y ∈ G, there exists z ∈ G such
that

o(z) = lcm(o(x), o(y)). (3)

Proof. Proof by induction on o(x)o(y). If o(x)o(y) = 1, then we can choose z = e. Otherwise, o(x)o(y) > 1 and we can wlog
factorize1

o(x) = AP, o(y) = BP ′, (4)

where P = pm > 1 for some prime p coprime to A,B; and P ′ | P .
Then

o(xP ) = A and o(yP
′
) = B (5)

By induction there exists z with o(z) = lcm(A,B).
Now note that o(xA) = P and P is coprime to o(z) = lcm(A,B). Therefore,

o(xAz) =P · lcm(A,B) Lemma 1

= lcm(AP,BP ′) P ′ | P
= lcm(o(x), o(y)),

as required.
1Intuition: this pulls out a fixed prime p from o(x) and o(y) as many times as possible. Can wlog assume o(x) has at least one prime factor p

since o(x)o(y) > 1, and also that p appears at least as many times in the prime factorization of o(x) than in that of o(y), else can relabel x ↔ y.
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Definition 7 (Cyclic groups and generators). Let G be a finite group, we say G is cyclic if there exists g ∈ G, such that
o(g) = |G|. In this case, we call g a generator of G.

Theorem 2. For all p prime, Z∗p is a cyclic group.

Example 4. In Z∗5, we have o(1) = 1, o(2) = 4, o(3) = 4, o(4) = 2. So 2 and 3 are the only generators.

Proof. Let ` be the least common multiple of the orders of the elements of Z∗p. By Proposition 2, ` must be the order of some
element in Z∗p. Thus it suffices to show ` = p− 1.

By Corollary 1, p− 1 is a common multiple of the orders of the elements of Z∗p, so ` ≤ p− 1.

Moreover, the definition of ` implies that every element of Z∗p is a root of P := X`− 1 ∈ Zp[X] in Zp. Since P is of degree
` and Z∗p has p− 1 distinct elements, we must have p− 1 ≤ ` by Proposition 1.

Hence ` = p− 1 and the theorem follows.
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