A Generalised Variational Quantum Eigensolver

Daochen Wang, Oscar Higgott, Stephen Brierley River Lane Research arXiv:1802.00171

I. Introduction

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm typically used to approximate the ground energy of a Hamiltonian $H = \sum a_i P_i$ where P_i are tensored Pauli operators. It is often compared with the quantum phase estimation algorithm (QPE). Idea: combine them!

Our work **replaces** the expectation estimation subroutine of VQE by a version of Bayesian QPE [1], which we name **a-QPE**, in order to reduce the subroutine's run-time by **up to a square root**. This is possible by exploiting quantum coherence time.

II. Define α-QPE

This is the α -QPE circuit which is iterated to find an eigenphase ψ of U. Before each iteration, the real tuple (M, θ) is chosen as $(1/\sigma^{\alpha}, \mu - \sigma)$ where μ , σ is the current mean and standard deviation on the Bayesian posterior of ψ .

Notation: $Z(M\theta) = \text{diag}(1, e^{-iM\theta}), |+\rangle$ is the +1 X eigenstate, measurement in the X basis.

III. Replace expectation estimation by α-QPE

VQE	$O(C_R)$	$O(\frac{1}{\epsilon^2})$	$O(C_R \frac{1}{\epsilon^2})$
$0\text{-}\mathrm{VQE}$	$O(C_R + \log n)$	$O(\frac{1}{\epsilon^2})$	$O((C_R + \log n) \frac{1}{\epsilon^2})$
1-VQE	$O((C_R + \log n) \frac{1}{\epsilon})$	$O(\log \frac{1}{\epsilon})$	$O((C_R + \log n)\frac{1}{\epsilon})$
α -VQE	$O((C_R + \log n) \frac{1}{\epsilon^{\alpha}})$	$O(f(\epsilon, lpha))$	$O((C_R + \log n) \frac{1}{\epsilon^{\alpha}} f(\epsilon, \alpha))$

TABLE I. Resource comparison of one expectation estimation subroutine within VQE, 0-VQE, 1-VQE, α -VQE. ϵ is the precision required for the expected energy, C_R is the state preparation depth cost, n is the number of qubits, and $\alpha \in [0, 1]$ is the free parameter that determines the circuit depth of α -QPE. Note that 0-VQE would never be advantageous over VQE but is included for completeness.

Boxed in red: up to square root speed-up

With *U* defined by the right circuit, Knill et al. [2] showed that $|\psi\rangle$ is always in a 50:50 superposition of two eigenstates of *U* with eigenphases $\pm \phi$ respectively where $\phi = 2 \arccos(|1 + \langle \psi| P | \psi \rangle | / 2)$. Running α -QPE with this *U* estimates the expectation value $\langle \psi | P | \psi \rangle$. This differs from standard expectation estimation which uses statistical sampling.

Notation: $\Pi = I - 2 |0\rangle \langle 0|, R : |0...0\rangle \mapsto |\psi\rangle$.

References

[1] N. Wiebe, C. Granade, *Physical Review Letters* **2016**, *117*, 10503.
[2] E. Knill, G. Ortiz, R. D. Somma, *Physical Review A* **2007**, *75*, 12328.