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Objective

Rigorously quantify how reinforcement learning
can be sped up by quantum computation.

Problem Setup

We consider a discounted MDP which is specified
by a 5-tuple (S,A, p, r, γ), where (i) S is the state
space, (ii) A is the action space, (iii) p(s′|s, a) are
the transition probabilities, (iv) r(s, a) ∈ [0, 1] are
the rewards, and (v) γ ∈ [0, 1) is the discount factor.
Following classical convention, we assume that all
parameters are known except p.

Goals: estimate the optimal Q-function (q∗), value
function (v∗), and policy (π∗).

Quantum Generative Model

IA classical generative model G enables sampling
from p(·|s, a) for any (s, a) ∈ S ×A of our choice.

IWe assume we have G as a classical circuit, which
is justified whenever there exists a simulator for
the environment; for example, if the environment
is a video game or some other program.

IThen, it is a standard fact that we can efficiently
convert G to a quantum circuit G that can
sample from p(·|s, a) in superposition. We call G
the quantum generative model.

IWe design quantum algorithms that use G to
achieve our goals; the number of times they call G
is their quantum sample complexity.

Main Results

Quantum computing allows for speedups in terms of the parameters ε, Γ := (1 − γ)−1, and A := |A|,
but not S := |S|. For simplicity, all bounds are for maximum failure probability δ being constant (the
dependence on δ is still logarithmic like for classical algorithms). The two quantum upper bounds that are
optimal in Γ only hold for restricted ε ∈ O(1/

√
Γ); otherwise the range of ε is unrestricted.
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1This equals the quantum time complexity up to log factors assuming access to quantum random access
memory (QRAM) which is the quantum analogue of classical RAM.

Upper Bounds

Main idea: apply quantum mean estimation [1] and maximum finding [2] to the algorithm in Ref. [3].
IQuantum mean estimation estimates E[X ] to accuracy ε using Õ(

√
Var[X ]/ε) quantum samples of X .

This can be thought of as a quadratically more efficient version of Chebyshev’s inequality.
IQuantum maximum finding finds the maximum of a size-n list using Õ(

√
n) quantum queries to it. This is

also quadratically more efficient than classical maximum finding which requires Ω(n) classical queries.
They can already speed up the red parts of the following basic version of value iteration which computes v∗:

v ← 0 ∈ RA

for ` = 1, 2, . . . , Õ( 1
1−γ) do

for s ∈ S do
v(s)← maxa∈A{r(s, a) + γE[v(s′) | s′ ∼ p(·|s, a)]}

end
end

However, this is highly sub-optimal, so we instead speed up the more sophisticated value iteration in Ref. [3].

Lower Bounds

We prove our lower bounds by considering hard MDP instances that are similar to those described in Ref. [4].
However, our argument is different. We reduce the computation of standard Boolean functions to the estima-
tion of q∗, v∗, and π∗ so that known lower bounds on the former computations imply our results.

Conclusion

To the best of our knowledge, ours is the first work
to rigorously study quantum algorithms for solving
MDPs. We show that quantum computers can of-
fer quadratic speedups in terms of ε, Γ, and A in
calculating q∗, v∗, and π∗. We show our algorithms
are either optimal, or optimal assuming Γ or A is
constant, for certain ranges of ε. Our work leaves
open many interesting questions, including:
ICan we find quantum algorithms that are optimal
in all parameters for an unrestricted range of ε?

I Is it possible to circumvent our quantum lower
bounds by changing the output requirement?

IOur quantum algorithms are model-free. Can we
develop model-based quantum algorithms?

References

[1] Ashley Montanaro. Quantum speedup of Monte Carlo methods.
Proceedings of the Royal Society A, 2015.

[2] Christoph Dürr and Peter Høyer. A Quantum Algorithm for Finding
the Minimum. Manuscript, 1996.

[3] Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye.
Near-Optimal Time and Sample Complexities for Solving Markov
Decision Processes with a Generative Model. NeurIPS 31, 2018.

[4] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen.
On the Sample Complexity of Reinforcement Learning with a
Generative Model. 29th ICML, 2012.

Acknowledgments

We especially thank Wen Sun for introducing us to reinforce-
ment learning. We also thank Aaron Sidford, Mengdi Wang,
and Xian Wu for helpful discussions. DW acknowledges fund-
ing by the Army Research Office (grant W911NF-20-1-0015)
and NSF award DMR-1747426. Part of this work was per-
formed while DW was an intern at Microsoft.

Contact Information
Daochen Wang
〈wdaochen@gmail.com〉
Aarthi Sundaram
〈aarthi.sundaram@microsoft.com〉


