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Quantum 101
Quantum computing = generalization of (classical) randomized computing

Randomized
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01 →
10 →
11 →

1/5
1/5
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Quantum

00 →
01 →
10 →
11 →
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1/2

−1/2
1/2

 (qu)bits in all  states “at the same time”n 2n

Deterministic
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11 →

0
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0
0

 bits in exactly one of  statesn 2n



catalysts

batteriesFinding better

superconductors

Ground 
state energy 
estimation 
problem

Promise of quantum computing



Input: Hamiltonian  (aka Hermitian matrix: ) H ∈ ℂN×N H† = H

Output: smallest eigenvalue of  H

Example:  H = ( 0 1 − i
1 + i 0 )

Solution: Output:   det(λI − H) = λ2 − 2 = 0 ⟹ λ = ± 2 ⟹ −2

Ground state energy estimation



Usefulness of ground state energy

dissociation 
energy

equilibrium 
geometry

bond length



Quantum algorithms for ground state energy estimation

Quantum phase 
estimation 
(QPE)

Variational 
quantum 
eigensolver (VQE)

Dissipative/
Lindbladian-
based methods

heuristic rigorous given  
mixing time

rigorous given  
initial state

Quantum phase 
estimation 
(QPE)



Quantum phase estimation (QPE)

Input: Hamiltonian , quantum state H ∈ ℂN×N |ψ ⟩ ∈ ℂN

Output:  with probability , where  and  is 


an eigenvector of  with eigenvalue 

Ei |αi |
2 |ψ ⟩ = ∑N

i=1 αi |vi ⟩ |vi ⟩

H Ei

Complexity: efficient — poly(log(N)) [Kitaev ’95] 



QPE for ground state energy estimation
Notation: Hamiltonian  eigenvalues: , 
                eigenvectors 

H ∈ ℂN×N E1 ≤ E2 ≤ … ≤ EN
|v1 ⟩, |v2 ⟩, …, |vN ⟩

Step 1: prepare |ψ ⟩ = ∑N
i=1 αi |vi ⟩

Step 2: run QPE  times with  and take smallest output O(1/ |α1 |2 ) H, |ψ ⟩



What is ?|ψ ⟩
Typically a classically-accessible quantum state

Examples:


1. Product state:   


2. Matrix product state


3. Tensor network state


4. Stabilizer state


5. Neural network state…

|ψ ⟩ = |ψ1 ⟩ ⊗ … ⊗ |ψn ⟩
aka Hartree-Fock/mean-field 
states in quantum chemistry



Quantum advantage = good overlap and bad energy

“Proof”

Quantum advantage = quantumly easy and classically hard

Notation: Hamiltonian  eigenvalues: , 

                eigenvectors ;  

H ∈ ℂN×N E1 ≤ E2 ≤ … ≤ EN

|v1 ⟩, |v2 ⟩, …, |vN ⟩ |ψ ⟩ = ∑N
i=1 αi |vi ⟩

Quantumly easy: QPE runtime   need high  — good overlapO(1/ |α1 |2 ) ⟹ |α1 |2

Classically hard:   far from  — bad energy∑N
i=1 |αi |

2 Ei E1



Is good 
overlap and 
bad energy 
plausible?



Energy spectra of quantum states
Notation: Hamiltonian  eigenvalues: , 

                eigenvectors ;  

H ∈ ℂN×N E1 ≤ E2 ≤ … ≤ EN

|v1 ⟩, |v2 ⟩, …, |vN ⟩ |ψ ⟩ = ∑N
i=1 αi |vi ⟩

The sequence  is known as the energy spectrum of |α1 |2 , …, |αN |2 |ψ ⟩

Good overlap  
and bad energy 

 high 

 non-negligible  

(assume )

|α1 |2

|α2 |2 , …, |αN |2

E1 < E2

⟺



Enter Silvester, Carleo, and White
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In approximate ground states obtained from imaginary-time evolution, the spectrum of the state—its
decomposition into exact energy eigenstates—falls off exponentially with the energy. Here we consider the
energy spectra of approximate matrix product ground states, such as those obtained with the density matrix
renormalization group. Despite the high accuracy of these states, contributions to the spectra are roughly
constant out to surprisingly high energy, with an increase in the bond dimension reducing the amplitude but
not the extent of these high-energy tails. The unusual spectra appear to be a general feature of compressed
wavefunctions, independent of boundary or dimensionality, and are also observed in neural network
wavefunctions. The unusual spectra can have a strong effect on sampling-based methods, yielding large
fluctuations. The energy variance, which can be used to extrapolate observables to eliminate truncation
error, is subject to these large fluctuations when sampled. Nevertheless, we devise a sampling-based
variance approach which gives excellent and efficient extrapolations.
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Numerical simulations of a variety of sorts have become
essential for the study of quantum many-body systems.
Given an approximate ground state, jψi, we consider its
decomposition into exact energy eigenstates, i.e., its energy
spectrum,

jψi ¼
X

n

cnjni; ð1Þ

where fjnig are the eigenstates of the Hamiltonian with
corresponding energies fEng. For a number of numerical
approaches based on imaginary-time evolution, e.g. quan-
tum Monte Carlo, the coefficients c2n fall off exponentially
with the gap En − E0, where E0 is the ground-state energy
[1,2]. This exponential falloff provides strong guarantees on
convergence rates, particularly where there are no near
degeneracies. Because the density matrix renormalization
group (DMRG) can achieve very accurate ground-state
energies, onemight assume that the high-energy coefficients
of the corresponding matrix product state (MPS) would
also fall off rapidly as the energy gap increases [3–8].
Surprisingly,we find that the high-energy coefficients do not
decrease exponentially with the gap. In fact, for a substantial
energy range they do not decrease much at all.
In Fig. 1 we show spectra for a spin S ¼ 1=2 Heisenberg

model on a 4 × 4 square lattice cluster. Since producing the
spectrum of a DMRG state requires a full diagonalization
of the Hamiltonian, it is only available on small test
systems. This model is described by the Hamiltonian

H ¼ J
X

hi;ji
S⃗i · S⃗j; ð2Þ

where the sum ranges over nearest-neighbor pairs. We set
J ¼ 1 throughout, corresponding to antiferromagnic cou-
pling. For this system, we compare DMRG results to those
from an exact imaginary-time evolution (ITE) starting with
a Néel state. The imaginary-time duration, τ, is chosen to
make the two states have approximately the same energy. A
clear exponential tail is seen for the ITE spectrum, as
expected. In contrast, the DMRG spectrum has very little
weight in the first few excited states and a tail that is
roughly constant out to surprisingly high energies. Note
that we choose fully periodic boundary conditions, for
which DMRG requires larger bond dimension to achieve

FIG. 1. Energy spectra of approximate ground states from
DMRG and imaginary-time evolution (ITE) for a small cluster
with fully periodic boundary conditions, broadened by Gaussians
with width 0.1. The states are matched to have the same energy,
with E − E0 ¼ 0.016, but the energy variance σ2

Ĥ
is much larger

for DMRG, 0.119 versus 0.0092.

PHYSICAL REVIEW LETTERS 134, 126503 (2025)
Editors' Suggestion
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Unusual energy spectra
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[ earlier:  ]

H =
1
4 ∑

⟨i,j⟩

XiXj + YiYj + ZiZj

X = (0 1
1 0), Y = (0 −i

i 0 ), Z = (1 0
0 −1)

X + Y



Compressed quantum states

Definition: a quantum state is compressed if its entanglement is limited

Entanglement measures how “uncertain” a state is a product state

Examples: 


 has zero entanglement


 has more entanglement


 has even more entanglement


|0 ⟩ |0 ⟩

0.9 |0 ⟩ |0 ⟩ + 0.1 |1 ⟩ |1 ⟩

1/2 |0 ⟩ |0 ⟩ + 1/2 |1 ⟩ |1 ⟩



Compressed quantum states

Classically accessible states


1. Product state:   


2. Matrix product state


3. Tensor network state


4. Stabilizer state


5. Neural network state…

|ψ ⟩ = |ψ1 ⟩ ⊗ … ⊗ |ψn ⟩ zero entanglement

entanglement limited by 
“bond dimension”

can have low or high  
entanglement 



Measuring entanglement







|0 ⟩ |0 ⟩

0.9 |0 ⟩ |0 ⟩ + 0.1 |1 ⟩ |1 ⟩

1/2 |0 ⟩ |0 ⟩ + 1/2 |1 ⟩ |1 ⟩

Entanglement entropy: −∑i pi log2(pi)







0

−0.9 ⋅ log2(0.9) − 0.1 ⋅ log2(0.1) ≈ 0.47

−(1/2) ⋅ (−1) ⋅ 2 = 1



A new measure: stable Schmidt rank







|0 ⟩ |0 ⟩

0.9 |0 ⟩ |0 ⟩ + 0.1 |1 ⟩ |1 ⟩

1/2 |0 ⟩ |0 ⟩ + 1/2 |1 ⟩ |1 ⟩

Entanglement min-
entropy: −log2(pmax)







 

0

−log2(0.9) ≈ 0.15

1

Stable Schmidt  
rank:  2−log2(pmax)

= 1/pmax

inspired by 
[Rudelson & Vershynin ’07] 



A key property of stable Schmidt rank
Notation:  = stable Schmidt rankχ( ⋅ )

Example: ,  = 1, , then


 if 

N = 2 χ(ψ) χ(v1) = χ(v2) = 2

2 ≤ |α1 | + |α2 | ⟹ |α1 | = |α2 | = 2/2 |α1 |2 + |α2 |2 = 1

Lemma: if  then  |ψ ⟩ = ∑N
i=1 αi |vi ⟩ 1/ χ(ψ) ≤ ∑N

i=1 |αi | / χ(vi)



A key property of stable Schmidt rank
Notation:  = stable Schmidt rankχ( ⋅ )

Proof: write , , 

can verify  and , and so


|ψ ⟩ = ∑x,y Γx,y |x ⟩ |y ⟩ |vi ⟩ = ∑x,y (Γi)x,y |x ⟩ |y ⟩

∥Γ∥ = 1/ χ(ψ) ∥Γi∥ = 1/ χ(vi)

Γ = ∑i αiΓi ⟹ ∥Γ∥ = ∥ ∑i αiΓi∥ ⟹ ∥Γ∥ ≤ ∑i |αi |∥Γi∥

Lemma: if  then  |ψ ⟩ = ∑N
i=1 αi |vi ⟩ 1/ χ(ψ) ≤ ∑N

i=1 |αi | / χ(vi)



From key property to energy spectra

Lemma: if  then  |ψ ⟩ = ∑N
i=1 αi |vi ⟩ 1/ χ(ψ) ≤ ∑N

i=1 |αi | / χ(vi)

Notation:  = stable Schmidt rankχ( ⋅ )

Theorem: suppose , ,  and  is 

minimized, then , for the unique   satisfying 


.

χ(ψ) = m χ(vi) = Mi ∑N
i=1 |αi |

2 = 1 ∑N
i=1 |αi |

2 Ei

|αi |
2 ∝

1
Mi(Ei − E*)2

E* < min
i

Ei

1
m

∑N
i=1

1
Mi(Ei − E*)2 = (∑N

i=1
1

Mi(Ei − E*) )2 Power law decay!



Theory vs experiment: 2D Heisenberg model

D = 50
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Theory
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Experiment

“contributions to the spectra are roughly constant out to surprisingly high energy, with an increase 
in the bond dimension (D) reducing the amplitude but not the extent of these high-energy tails”



Expect theory to lower bound experiment

Lemma: if  then  |ψ ⟩ = ∑N
i=1 αi |vi ⟩ 1/ χ(ψ) ≤ ∑N

i=1 |αi | / χ(vi)

Proof: write , , 

can verify  and , and so


|ψ ⟩ = ∑x,y Γx,y |x ⟩ |y ⟩ |ψi ⟩ = ∑x,y (Γi)x,y |x ⟩ |y ⟩

∥Γ∥ = 1/ χ(ψ) ∥Γi∥ = 1/ χ(vi)

Γ = ∑i αiΓi ⟹ ∥Γ∥ = ∥ ∑i αiΓi∥ ⟹ ∥Γ∥ ≤ ∑i |αi |∥Γi∥

Lossy!  is more constrained1/ χ(ψ) ≤ ∥ ∑i αiΓi∥



Is good 
overlap and 
bad energy 
plausible?

Yes, for compressed 
quantum states, it is 
enforced by entanglement!

Thank you for your attention


