Energy spectra of compressed quantum states
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Quantum 101

Quantum computing = generalization of (classical) randomized computing

Deterministic Randomized Quantum
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n bits in exactly one of 2" states n (qu)bits in all 2" states “at the same time”



Promise of quantum computing

catalysts

Ground
state energy

¥ estimation 3§
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Ground state energy estimation

Input: Hamiltonian H € CM™ (aka Hermitian matrix: H' = H)

Output: smallest eigenvalue of H

(0 1 —1
= le: H =
AAMpPIE <1+i 0 )

Solution: detAl — H) =1 -2=0 = 1=+2 = Output: =2



Usefulness of ground state energy

Ground state energy of H, (Hartree)
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Quantum algorithms for ground state energy estimation

Quantum phase Variational Dissipative/
estimation ,  quantum : Lindbladian-
(QPE) . eigensolver (VQE) . based methods

rigorous given
Initial state

rigorous given

heuristic mixing time



Quantum phase estimation (QPE)

(]:N XN

Input: Hamiltonian H € , quantum state |y ) € cV

N

Output: E; with probability | a;|*, where |y) = 2. %|v;yand |v;)is

an eigenvector of H with eigenvalue E,

Complexity: efficient — poly(log(V))



QPE for ground state energy estimation

Notation: Hamiltonian H € CYV

eigenvectors | v, ), v, Yy eens \VN>

eigenvalues: £, < Ek, < ... S Ey,

N

Step 1: prepare |y ) = 21':1 ;| v; )

Step 2: run QPE O(1/] a; \2) times with H, |y ) and take smallest output



Whatis |y )?

Typically a classically-accessible quantum state

Examples: _
aka Hartree-Fock/mean-field

1. Product state: |y) = |y ) ® ... ® |w, ) » states in quantum chemistry

2. Matrix product state
3. Tensor network state

4. Stabilizer state

5. Neural network state...



Quantum advantage = good overlap and bad energy

Notation: Hamiltonian H € C"*" eigenvalues: E;, < E, < ... < E,,

. N
eigenvectors | vy ), [ vy ), ..., [vy ) lw) = 2. & v;)

“Proof”

Quantum advantage = quantumly easy and classically hard

Quantumly easy: QPE runtime O(1/| a; \2) —> need high | a; \2 — good overlap

Classically hara: Zi\il Ke? \ZEZ- far from £, — bad energy



overlap and
bad energy
plausible



Energy spectra of quantum states

Notation: Hamiltonian H € C**" eigenvalues: E, < E, <

N

... < Ey,
eigenvectors |v; ), [V, ), ..., |vy); |y) = Zizlai‘vi>

The sequence | @ R aN\z is known as the energy spectrum of |y )

| |* high
Good overlap , 2
= |, |7, ..., | an|” non-negligible
and bad energy

(assume L < L)



Enter Silvester, Carleo, and White
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In approximate ground states obtained from imaginary-time evolution, the spectrum of the state—its
decomposition into exact energy eigenstates—ifalls off exponentially with the energy. Here we consider the
energy spectra of approximate matrix product ground states, such as those obtained with the density matrix
renormalization group. Despite the high accuracy of these states, contributions to the spectra are roughly
constant out to surprisingly high energy, with an increase in the bond dimension reducing the amplitude but
not the extent of these high-energy tails. The unusual spectra appear to be a general feature of compressed
wavefunctions, independent of boundary or dimensionality, and are also observed in neural network
wavefunctions. The unusual spectra can have a strong effect on sampling-based methods, yielding large
fluctuations. The energy variance, which can be used to extrapolate observables to eliminate truncation
error, 1s subject to these large fluctuations when sampled. Nevertheless, we devise a sampling-based
variance approach which gives excellent and efficient extrapolations.



Unusual energy spectra

S = 2 Heisenberg square lattice
4 X 4 torus

1
H = ZZ)(ixj+ Y+ ZZ
(i)

(0 1\ ,_ (0 =i\, _ (1 0
— DMRG (m = 100) X‘<1 o)’Y_ <i o>’Z_<o —1)
— ITE (tr = 3.8)

[ earlier: X + Y]




Compressed quantum states

Definition: a quantum state is compressed If its entanglement is limited

Entanglement measures how “uncertain” a state Is a product state

Examples:

|0 )]0 ) has zero entanglement

1v/0.910)|0) ++/0.1|1)]|1) has more entanglement
\/1/2|0)|0)+4/1/2|1)]|1 ) has even more entanglement



Compressed quantum states

Classically accessible states

1. Product state: |y) = |y;)® ... ® |y,) <«—— zero entanglement

2. Matrix product state > entanglement limited by

3. Tensor network state bond dimension

4. Stabilizer state .
> can have low or high
5. Neural network state... entanglement



Measuring entanglement

Entanglement entropy: — >, p;10g,(p;)

[0)]0) 0
V0.910)10) ++/0.11)[1) —0.9 - 10g,(0.9) — 0.1 - log,(0.1) ~ 0.47

V17/210)10) ++/172]1)] 1) —(1/2) - (=1)-2 =1



A new measure: stable Schmidt rank

Entanglement min-

entropy: —102,(P,11x) .
[0)]10) 0 Stable Schmidt
§ rank: 2710220Pm) 3
Y =1pox F
V0.910)10) ++/0.111)[1) —10g,(0.9) ~ 0.15
V17210)10) +y/172] 1) 1) 1 Inspired by

[Rudelson & Vershynin ’07]



A key property of stable Schmidt rank

Notation: y( - ) = stable Schmidt rank

Lemma: if |y ) = Zl ;| v;) then 1/4/x(y) < Zl il I\ x(v)

Example: N = 2, y(y) =1, y(v;) = y(v,) = 2, then

V2 <la |+ = o]l =] =272 |ay >+ |, ]* =1



A key property of stable Schmidt rank

Notation: y( - ) = stable Schmidt rank

Lemma: if |y ) = Zi\;lai\vi)then 1/7/y(y) < Zil |a: | /\/ x(v)

Proof: write [yr) = 2 T lx)ly) [viy = 2 (T, lx)1y),
can verify ||I'|| = 1/4/xy(y) and ||| = 1/4/x(v;), and so

=Y al, = Tl =13,all = T <X, lallT



From key property to energy spectra

Notation: y( - ) = stable Schmidt rank

Lemma: if |y ) = Zi\;lai\vi)then 1/7/y(y) < Zil |a: | /\/ x(v)

Theorem: suppose y(yv) = m, y(v;) = M, Ziil |a;]* = 1 and Ziil AR AR

1 °
minimized, then | @ |* o« ————————, for the unique E* < min E; satisfying
M(E; — E*)? i
i ZN 1 B ( ZN 1 )2\ '
o =l MUE, — Er? | \Hi=1 M(E,— E%) /) Power law decay!



Theory vs experiment: 2D Heisenberg model

Theory
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Expect theory to lower bound experiment
Lemma: if |y ) = Zi.ilailvl-) then 1/4/y(y) < Zﬁl |a: | /\/ x(v)

Proof: write |y ) = Zx,yrx,y\x) lv), |w) = Zx’y (Fi)x,y‘x> [ y),
can verify [|I'l| = 1/4/x(y) and ||I';|| = 1/4/x(v;), and so
M= Yal; = 0l =1 Z,alil = IO < T el

Lossy! 1/4/x(w) < || 2..a;T';|| is more constrained
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Yes, for compressed
quantum states, It Is
enforced by entanglement!
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Thank you for your attention



