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Exploring multi-armed bandits



You are in a casino...

...faced with n slot machines each with an unknown probability pi
of giving unit reward when its arm is pulled.



The exploration problem (or best-arm identification)

How many arm pulls (aka queries) are necessary and sufficient to
find the arm with the largest pi (best arm) with high probability?

I Classically, one query is one sample from one of the machines,
i.e., a sample from a Bernoulli(pi ) random variable.

I Quantumly, one query is one application of the quantum
bandit oracle:

O : |i〉 |0〉 |0〉 7→ |i〉 (
√
pi |1〉 |ui 〉+

√
1− pi |0〉 |vi 〉), (1)

for some arbitrary states |ui 〉 and |vi 〉.



Example application: finding the best move in a game

You have n candidate moves, where move i can lead to one in a
set X (i) of possible subsequent games.

I Assume you have computer code f that, for move i and game
x ∈ X (i), computes f (i , x) = 1 if you win and = 0 if you lose.

I We can instantiate one query to the quantum bandit oracle
using one call to f :

|i〉 |0〉 1√
|X (i)|

∑
x∈X (i)

|x〉

f7→ |i〉
∑

x∈X (i)

1√
|X (i)|

|f (i , x)〉 |x〉

= |i〉 (
√

pi |1〉 |ui 〉+
√

1− pi |0〉 |vi 〉),

(2)

where |ui 〉 and |vi 〉 are some states and pi equals the
probability that move i leads to your win.



Quantum exploration algorithms



Quadratic quantum speedup in query and time complexity

Suppose that p1 > p2 ≥ p3 ≥ · · · ≥ pn.

I Classically: necessary and sufficient to use order1

H :=
n∑

i=2

1

(p1 − pi )2
(3)

reward samples to identify the best arm.

I Quantumly (our result): necessary and sufficient to use order√√√√ n∑
i=2

1

(p1 − pi )2
=
√
H (4)

queries to the quantum bandit oracle to identify the best arm.
This scaling also holds for time complexity.

1In this talk, “order” also means “order up to log factors”.



Fast quantum algorithm (overview)

I Case 1: know both p1 and p2. Mark arms i with pi smaller
than (p1 + p2)/2 using about ti := 1/(p1 − pi ) queries by
amplitude estimation. Then use variable time amplitude
amplification2, on top of the marking algorithm, to amplify the
unmarked arm, i.e., arm i = 1, so that it is output with high

probability. Uses order
√

t22 + t23 + · · ·+ t2n =
√
H queries.

I Case 2: know neither p1 nor p2. For a given probability p,
can count how many arms i have pi > p using variable time
amplitude estimation3. Therefore, can locate p1 and p2 by
binary search. Uses order

√
H queries. Then back to the first

case.

2Ambainis (2012).
3Chakraborty, Gilyén, and Jeffery (2019).



Variable time quantum algorithms (1/2)

First example: variable time quantum search by Ambainis (2006).

I Like in Grover search, the goal is to find a marked item among
n different items.

I The problem is generalized such that a query cost of ti is
associated with checking if item i is marked.

I Result: an overall query complexity of O
(√

t21 + · · ·+ t2n

)
is

necessary and sufficient to find the marked item. In the
Grover case, all tj = O(1), so recover O(

√
n) scaling.



Variable time quantum algorithms (2/2)

Variable time amplitude amplification (VTAA) and estimation
(VTAE) generalize variable time quantum search.

I Suppose A is a quantum algorithm such that

A |0m〉 =
√
p |ψ1〉 |1〉+

√
1− p |ψ0〉 |0〉 . (5)

I Suppose further that A is a variable time algorithm. That is,
A can be written as a product A := AmAm−1 . . .A0.
Suppose further that after each step j ∈ {1, . . . , n} there is
some probability ωj of the algorithm stopping and that the
query complexity up to that step is tj .

I Then can roughly obtain |ψ1〉 and p using roughly
O(tavg/

√
p) queries, where t2avg :=

∑m
j=1 ωj t

2
j , by VTAA and

VTAE applied to A respectively.



Constructing a variable time quantum algorithm A
For given 0 < `2 < `1 < 1, we construct a variable time quantum
algorithm A, inspired by classical successive elimination, such that

A |0m〉 =

√
|Sright|

n
|ψ1〉 |1〉+

√
|Sleft|
n
|ψ0〉 |0〉+ λ |ψjunk〉 , (6)

where Sright := {i : pi > `1} and Sleft := {i : pi ≤ `2}, |ψ1〉
contains an equal superposition of indices in Sright, and

t2avg =
1

n

( |Sright|
(`1 − `2)2

+
∑

i∈Sleft∪Smiddle

1

(`1 − pi )2

)
, (7)

where Smiddle := {i : `2 < pi ≤ `1}.
Illustration of Sleft = {2, . . . , n}, Smiddle = ∅, and Sright = {1}:

0 1`2 `1 p1p2pn . . .



Case 1: know both p1 and p2 – just apply VTAA to A

Set `1 = p1 − (p1 − p2)/3 and `2 = p2 + (p1 − p2)/3, say. Then
we have the same picture as before:

0 1`2 `1 p1p2pn . . .

and so again Sleft = {2, . . . , n}, Smiddle = ∅, and Sright = {1}.
We can simplify the previous expressions:

A |0m〉 =
√

1/n |ψ1〉 |1〉+
√

(n − 1)/n |ψ0〉 |0〉 ,

t2avg = O
(1

n

n∑
i=2

1

(p1 − pi )2

)
.

(8)

Applying VTAA to A costs O(tavg/
√
p) = O(

√
H) queries and

yields |ψ1〉 which now just contains the best-arm index state |1〉.



Case 2: know neither p1 nor p2 – use VTAE first (1/2)

Recall

A |0m〉 =

√
|Sright|

n
|ψ1〉 |1〉+

√
|Sleft|
n
|ψ0〉 |0〉+ λ |ψjunk〉 . (9)

I If we could set `2 = `1 in the definition of A then Smiddle = ∅,
so |Sright|+ |Sleft| = n, and so λ must be 0. Therefore, VTAE
on A gives us an estimate of |Sright|/n. So by binary search,
we can estimate each of p1 and p2 very cheaply.

I But the cost of A scales with 1/(`1 − `2)2, so the above
doesn’t work. In fact, a similar problem shows up in the
problem of quantum ground state preparation. That problem
was only recently resolved by a clever trick introduced by Lin
and Tong (2020) in their paper “Near-optimal ground state
preparation”. We use a modified version of their trick.



Case 2: know neither p1 nor p2 – use VTAE first (2/2)

The main idea is to use two choices for the pair (`1, `2) at each
binary search step.

I Suppose it is currently known that p1 ∈ [a, b], we apply VTAE
to A defined with (`2, `1) first set to (a + ε, a + 3ε) and then
to (a + 2ε, a + 4ε), where ε = (b − a)/5.

a ba + ε a + 2ε a + 3ε a + 4ε

`2 `1`′2 `′1

I Depending on the output of the VTAE algorithm, we can
always shrink the interval in which we are confident p1 belongs
to one of [a, a + 3ε], [a + ε, a + 4ε], and [a + 2ε, a + 5ε].

I These intervals have length 3/5 that of the original [a, b].
Repeatly applying this procedure is sort of like binary
searching for p1. Same procedure also works for p2.



Brief description of A
Our best-arm identification algorithm applies VTAA and VTAE to
a variable time algorithm A. But what is A?



Variants: PAC, fixed budget, and non-Bernoulli

By slight modifications, our quantum algorithm can be adapted to
work in the following settings.

I PAC. If our goal is only to output an ε-optimal arm i with
p1 − pi < ε, our algorithm can be adapted to have smaller
query complexity that is of order

√
min{n/ε2,H}.

I Fixed budget. If H is known in advance, for any sufficiently
large T , our algorithm can be adapted to use T queries to
output the best arm with probability at least
1− exp(−Ω(T/

√
H)).

I Non-Bernoulli. Our algorithm can be adapted to work even if
the arm distributions are only guaranteed to have bounded
variance, in particular, if they are sub-Gaussian. The
modification goes via the quantum mean estimation algorithm
of Montanaro (2015).



Quantum lower bound



Quantum lower bound proof (1/2)

Let η ≈ p1 − p2. Use the quantum adversary method4 to prove
that the following set of n multi-armed bandit oracles require
Ω(
√
H) queries to distinguish:

1 p1, p2, p3, . . . pn

2 p1, p1 + η, p3, . . . pn

. . .

n p1, p2, p3, . . . p1 + η

But our quantum algorithm can distinguish them using O(
√
H)

queries, so it is tight (up to log factors).

4Ambainis (2000).



Quantum lower bound proof (2/2)

I The standard adversary method applies only to oracles Ux

encoding Boolean bitstrings x ∈ {0, 1}n
(Ux : |i〉 |b〉 7→ |i〉 |b ⊕ xi 〉).

I The quantum bandit oracle encode probabilities instead.
Therefore, we cannot make use of ready-made adversary
method lower bounds.

I Instead we use the idea of the adversary method to derive our
lower bound from scratch. Mathematically, this comes down
to bounding the entries of the matrix(√

1− pi
√
pi√

pi −
√

1− pi

)†(√
1− p′1

√
p′1√

p′1 −
√

1− p′1

)
− I, (10)

where i > 1 and p′1 := p1 + η.



Conclusion



Conclusion

We have constructed an asymptotically optimal quantum algorithm
that offers a quadratic speedup for finding the best arm in a
multi-armed bandit.

Open problems and future directions:

I Can we give quantum algorithms for exploration in the fixed
budget setting with improved success probability?

I Can we give quantum algorithms for the exploitation of
multi-armed bandits with favorable regret?

I Can we give fast quantum algorithms for finding a
near-optimal policy of a Markov decision process (MDP)?

Thank you for your attention!
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