Quantum exploration algorithms for multi-armed bandits

Daochen Wang University of Maryland arXiv: 2006.12760 (in AAAI 2021)

Tongyang Li (MIT)

Andrew Childs (Maryland)

2nd March 2021, GMU seminar

Exploring multi-armed bandits

Quantum exploration algorithms

Quantum lower bound

Conclusion

Exploring multi-armed bandits

You are in a casino...

...faced with *n* slot machines each with an *unknown* probability p_i of giving unit reward when its arm is pulled.

The exploration problem (or best-arm identification)

How many arm pulls (aka queries) are necessary and sufficient to find the arm with the largest p_i (best arm) with high probability?

- Classically, one query is one sample from one of the machines, i.e., a sample from a Bernoulli(p_i) random variable.
- Quantumly, one query is one application of the *quantum* bandit oracle:

 $\mathcal{O}: |i\rangle |0\rangle |0\rangle \mapsto |i\rangle (\sqrt{p_i} |1\rangle |u_i\rangle + \sqrt{1-p_i} |0\rangle |v_i\rangle), \quad (1)$

for some arbitrary states $|u_i\rangle$ and $|v_i\rangle$.

Example application: finding the best move in a game

You have *n* candidate moves, where move *i* can lead to one in a set X(i) of possible subsequent games.

- Assume you have computer code f that, for move i and game x ∈ X(i), computes f(i, x) = 1 if you win and = 0 if you lose.
- We can instantiate one query to the quantum bandit oracle using one call to f:

$$|i\rangle |0\rangle \frac{1}{\sqrt{|X(i)|}} \sum_{x \in X(i)} |x\rangle$$

$$\stackrel{f}{\mapsto} |i\rangle \sum_{x \in X(i)} \frac{1}{\sqrt{|X(i)|}} |f(i,x)\rangle |x\rangle$$

$$= |i\rangle (\sqrt{p_i} |1\rangle |u_i\rangle + \sqrt{1 - p_i} |0\rangle |v_i\rangle),$$
(2)

where $|u_i\rangle$ and $|v_i\rangle$ are some states and p_i equals the probability that move *i* leads to your win.

Quantum exploration algorithms

Quadratic quantum speedup in query and time complexity Suppose that $p_1 > p_2 \ge p_3 \ge \cdots \ge p_n$.

Classically: necessary and sufficient to use order¹

$$H := \sum_{i=2}^{n} \frac{1}{(p_1 - p_i)^2}$$
(3)

reward samples to identify the best arm.

Quantumly (our result): necessary and sufficient to use order

$$\sqrt{\sum_{i=2}^{n} \frac{1}{(p_1 - p_i)^2}} = \sqrt{H}$$
 (4)

queries to the quantum bandit oracle to identify the best arm. This scaling also holds for time complexity.

¹In this talk, "order" also means "order up to log factors".

Fast quantum algorithm (overview)

- ▶ Case 1: know both p_1 and p_2 . Mark arms *i* with p_i smaller than $(p_1 + p_2)/2$ using about $t_i := 1/(p_1 p_i)$ queries by amplitude estimation. Then use variable time amplitude amplification², on top of the marking algorithm, to amplify the *unmarked* arm, i.e., arm i = 1, so that it is output with high probability. Uses order $\sqrt{t_2^2 + t_3^2 + \cdots + t_n^2} = \sqrt{H}$ queries.
- ▶ Case 2: know neither p_1 nor p_2 . For a given probability p, can count how many arms *i* have $p_i > p$ using variable time amplitude estimation³. Therefore, can locate p_1 and p_2 by binary search. Uses order \sqrt{H} queries. Then back to the first case.

²Ambainis (2012).

³Chakraborty, Gilyén, and Jeffery (2019).

Variable time quantum algorithms (1/2)

First example: variable time quantum search by Ambainis (2006).

- Like in Grover search, the goal is to find a marked item among n different items.
- The problem is generalized such that a query cost of t_i is associated with checking if item i is marked.
- ▶ Result: an overall query complexity of $O(\sqrt{t_1^2 + \cdots + t_n^2})$ is necessary and sufficient to find the marked item. In the Grover case, all $t_j = O(1)$, so recover $O(\sqrt{n})$ scaling.

Variable time quantum algorithms (2/2)

Variable time amplitude amplification (VTAA) and estimation (VTAE) generalize variable time quantum search.

 \blacktriangleright Suppose ${\mathcal A}$ is a quantum algorithm such that

$$\mathcal{A} \left| 0^{m} \right\rangle = \sqrt{p} \left| \psi_{1} \right\rangle \left| 1 \right\rangle + \sqrt{1 - p} \left| \psi_{0} \right\rangle \left| 0 \right\rangle.$$
(5)

- Suppose further that A is a variable time algorithm. That is, A can be written as a product A := A_mA_{m-1}...A₀. Suppose further that after each step j ∈ {1,..., n} there is some probability ω_j of the algorithm stopping and that the query complexity up to that step is t_j.
- ▶ Then can roughly obtain $|\psi_1\rangle$ and p using roughly $O(t_{avg}/\sqrt{p})$ queries, where $t_{avg}^2 := \sum_{j=1}^m \omega_j t_j^2$, by VTAA and VTAE applied to A respectively.

Constructing a variable time quantum algorithm \mathcal{A}

For given $0 < \ell_2 < \ell_1 < 1$, we construct a variable time quantum algorithm A, inspired by classical successive elimination, such that

$$\mathcal{A} \left| 0^{m} \right\rangle = \sqrt{\frac{\left| \mathcal{S}_{\text{right}} \right|}{n}} \left| \psi_{1} \right\rangle \left| 1 \right\rangle + \sqrt{\frac{\left| \mathcal{S}_{\text{left}} \right|}{n}} \left| \psi_{0} \right\rangle \left| 0 \right\rangle + \lambda \left| \psi_{\text{junk}} \right\rangle, \quad (6)$$

where $S_{\text{right}} := \{i : p_i > \ell_1\}$ and $S_{\text{left}} := \{i : p_i \leq \ell_2\}$, $|\psi_1\rangle$ contains an equal superposition of indices in S_{right} , and

$$t_{\text{avg}}^{2} = \frac{1}{n} \Big(\frac{|S_{\text{right}}|}{(\ell_{1} - \ell_{2})^{2}} + \sum_{i \in S_{\text{left}} \cup S_{\text{middle}}} \frac{1}{(\ell_{1} - p_{i})^{2}} \Big), \quad (7)$$

where $S_{\text{middle}} := \{i : \ell_2 < p_i \leq \ell_1\}.$ Illustration of $S_{\text{left}} = \{2, \dots, n\}$, $S_{\text{middle}} = \emptyset$, and $S_{\text{right}} = \{1\}$:

$$\begin{bmatrix} & & & & \\ 0 & p_n & & \\ & & & p_2 & \ell_2 & \ell_1 & p_1 & 1 \end{bmatrix}$$

Case 1: know both p_1 and p_2 – just apply VTAA to A

Set $\ell_1 = p_1 - (p_1 - p_2)/3$ and $\ell_2 = p_2 + (p_1 - p_2)/3$, say. Then we have the same picture as before:

$$\begin{bmatrix} & & & & \\ 0 & p_n & & \\ & & p_2 & \ell_2 & \ell_1 & p_1 & 1 \end{bmatrix}$$

and so again $S_{\text{left}} = \{2, ..., n\}$, $S_{\text{middle}} = \emptyset$, and $S_{\text{right}} = \{1\}$. We can simplify the previous expressions:

$$\mathcal{A} |0^{m}\rangle = \sqrt{1/n} |\psi_{1}\rangle |1\rangle + \sqrt{(n-1)/n} |\psi_{0}\rangle |0\rangle,$$

$$t_{\text{avg}}^{2} = O\Big(\frac{1}{n} \sum_{i=2}^{n} \frac{1}{(p_{1}-p_{i})^{2}}\Big).$$
 (8)

Applying VTAA to \mathcal{A} costs $O(t_{avg}/\sqrt{p}) = O(\sqrt{H})$ queries and yields $|\psi_1\rangle$ which now just contains the best-arm index state $|1\rangle$.

Case 2: know neither p_1 nor p_2 – use VTAE first (1/2) Recall

$$\mathcal{A} \left| 0^{m} \right\rangle = \sqrt{\frac{\left| \mathcal{S}_{\text{right}} \right|}{n}} \left| \psi_{1} \right\rangle \left| 1 \right\rangle + \sqrt{\frac{\left| \mathcal{S}_{\text{left}} \right|}{n}} \left| \psi_{0} \right\rangle \left| 0 \right\rangle + \lambda \left| \psi_{\text{junk}} \right\rangle.$$
(9)

- If we could set ℓ₂ = ℓ₁ in the definition of A then S_{middle} = Ø, so |S_{right}| + |S_{left}| = n, and so λ must be 0. Therefore, VTAE on A gives us an estimate of |S_{right}|/n. So by binary search, we can estimate each of p₁ and p₂ very cheaply.
- ▶ But the cost of A scales with 1/(ℓ₁ ℓ₂)², so the above doesn't work. In fact, a similar problem shows up in the problem of *quantum ground state preparation*. That problem was only recently resolved by a clever trick introduced by Lin and Tong (2020) in their paper "Near-optimal ground state preparation". We use a modified version of their trick.

Case 2: know neither p_1 nor p_2 – use VTAE first (2/2)

The main idea is to use *two* choices for the pair (ℓ_1, ℓ_2) at each binary search step.

Suppose it is currently known that p₁ ∈ [a, b], we apply VTAE to A defined with (ℓ₂, ℓ₁) first set to (a + ε, a + 3ε) and then to (a + 2ε, a + 4ε), where ε = (b − a)/5.

$$\begin{bmatrix} & + & + & + & + \\ a & a + \epsilon & a + 2\epsilon & a + 3\epsilon & a + 4\epsilon & b \\ \ell_2 & \ell'_2 & \ell_1 & \ell'_1 \end{bmatrix}$$

- ▶ Depending on the output of the VTAE algorithm, we can always *shrink* the interval in which we are confident p₁ belongs to one of [a, a + 3ϵ], [a + ϵ, a + 4ϵ], and [a + 2ϵ, a + 5ϵ].
- These intervals have length 3/5 that of the original [a, b]. Repeatly applying this procedure is sort of like binary searching for p₁. Same procedure also works for p₂.

Brief description of ${\cal A}$

Our best-arm identification algorithm applies VTAA and VTAE to a variable time algorithm \mathcal{A} . But what is \mathcal{A} ?

Algorithm 1: $\mathcal{A}(\mathcal{O}, l_2, l_1, \alpha)$ **Input:** Oracle O as in (2); $0 < l_2 < l_1 < 1$; approximation parameter $0 < \alpha < 1$. $1 \Delta \leftarrow l_1 - l_2$ 2 $m \leftarrow \left\lceil \log \frac{1}{\Lambda} \right\rceil + 2$ $a \leftarrow \frac{\alpha}{2mn^{3/2}}$ 4 Initialize state to $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}|i\rangle_{I}|\operatorname{coin} p_{i}\rangle_{B}|0\rangle_{C}|0\rangle_{P}|1\rangle_{F}$ **5** for j = 1, ..., m do $\epsilon_i \leftarrow 2^{-j}$ 6 7 **if** register I is in state $|i\rangle$ and registers C_1,\ldots,C_{i-1} are in state $|0\rangle$ then Apply $\tilde{\mathsf{GAE}}(\epsilon_j, a; l_1)$ with \mathcal{O}_{p_i} on registers B, C_j , and P_j 8 Apply controlled-NOT gate with control on 9 register C_i and target on register F10 if registers C_1, \ldots, C_m are in state $|0\rangle$ then 11 Flip the bit stored in register C_{m+1}

Variants: PAC, fixed budget, and non-Bernoulli

By slight modifications, our quantum algorithm can be adapted to work in the following settings.

- PAC. If our goal is only to output an *ϵ*-optimal arm *i* with p₁ − p_i < *ϵ*, our algorithm can be adapted to have smaller query complexity that is of order √min{n/ϵ², H}.
- Fixed budget. If H is known in advance, for any sufficiently large T, our algorithm can be adapted to use T queries to output the best arm with probability at least 1 − exp(−Ω(T/√H)).
- Non-Bernoulli. Our algorithm can be adapted to work even if the arm distributions are only guaranteed to have bounded variance, in particular, if they are sub-Gaussian. The modification goes via the quantum mean estimation algorithm of Montanaro (2015).

Quantum lower bound

Quantum lower bound proof (1/2)

Let $\eta \approx p_1 - p_2$. Use the quantum adversary method⁴ to prove that the following set of *n* multi-armed bandit oracles require $\Omega(\sqrt{H})$ queries to distinguish:

But our quantum algorithm can distinguish them using $O(\sqrt{H})$ queries, so it is tight (up to log factors).

⁴Ambainis (2000).

Quantum lower bound proof (2/2)

- The standard adversary method applies only to oracles U_x encoding Boolean bitstrings x ∈ {0,1}ⁿ (U_x : |i⟩ |b⟩ → |i⟩ |b ⊕ x_i⟩).
- The quantum bandit oracle encode probabilities instead. Therefore, we cannot make use of ready-made adversary method lower bounds.
- Instead we use the *idea* of the adversary method to derive our lower bound from scratch. Mathematically, this comes down to bounding the entries of the matrix

$$\begin{pmatrix} \sqrt{1-p_i} & \sqrt{p_i} \\ \sqrt{p_i} & -\sqrt{1-p_i} \end{pmatrix}^{\dagger} \begin{pmatrix} \sqrt{1-p_1'} & \sqrt{p_1'} \\ \sqrt{p_1'} & -\sqrt{1-p_1'} \end{pmatrix} - \mathbb{I},$$
(10)

where i > 1 and $p'_1 := p_1 + \eta$.

Conclusion

Conclusion

We have constructed an asymptotically optimal quantum algorithm that offers a quadratic speedup for finding the best arm in a multi-armed bandit.

Open problems and future directions:

- Can we give quantum algorithms for exploration in the fixed budget setting with improved success probability?
- Can we give quantum algorithms for the *exploitation* of multi-armed bandits with favorable regret?
- Can we give fast quantum algorithms for finding a near-optimal policy of a Markov decision process (MDP)?

Thank you for your attention!