
Quantum divide and conquer
Daochen Wang (University of Maryland)

IQC Waterloo, full version: arXiv:2210.06419

Microsoft
(→Google)

Examples of quantum speedups

Some problems admit exponen1al quantum speedup
Factoring, discrete logarithm, solving Pell’s equa7on, quantum simula7on, EXIT-finding in glued-
trees graph, graph connec7vity using cut queries, Forrela7on, Yamakawa-Zhandry problem…

Can we find more problems with quantum speedup?

Others admit polynomial quantum speedup
Unstructured search, minimum finding, dynamic programming, graph proper7es using adjacency
matrix queries, Monte Carlo mean es7ma7on, element dis7nctness, formula evalua7on…

Tools for designing quantum algorithms
• Fourier sampling
• Grover search/amplitude amplifica1on
• Quantum walk
• Span programs
• Adiaba1c op1miza1on/QAOA
• Quantum signal processing/QSVT
• …

Divide and conquer
1. Divide a problem into subproblems
2. Recursively solve each subproblem
3. Combine the solu1ons of the subproblems to solve full problem

𝐶 𝑛 = 2𝐶 𝑛/2 + 𝑂 𝑛

𝐶 𝑛 = 𝑂(𝑛 log 𝑛)

➔

Example: Mergesort

Recurrence:

From classical to quantum divide and conquer
Simple example:

Divide and conquer:

Classical:

Quantum:

OR 𝑥 = OR(OR 𝑥!"#$, OR(𝑥%&'($))

OR 𝑥 = 𝑥) ∨ 𝑥* ∨ ⋯∨ 𝑥+

𝐶 𝑛 ≤ 2𝐶 𝑛/2 𝐶 𝑛 ≤ 𝑛

𝐶 𝑛 ≤ 2𝐶 𝑛/2 𝐶 𝑛 ≤ 𝑛

➔

➔ ?

From classical to quantum divide and conquer
Divide a problem of size 𝑛 into 𝑎 instances of size 𝑛/𝑏 each

• Typical divide-and-conquer recurrence:

• Corresponding quantum divide-and-conquer recurrence:

𝐶 𝑛 ≤ 𝑎	𝐶 𝑛/𝑏 + 𝐶!"#(𝑛)

𝐶$ 𝑛 ≤ 𝑎	𝐶$ 𝑛/𝑏 + 𝐶$!"#(𝑛)

Classical cost of solving auxiliary problem

Quantum cost of solving auxiliary
problem is O(𝐶!"#$ 𝑛)

Query complexity
The query model is a useful model in which we can provably compare
the power of classical and quantum computers

Example: OR:	{0,1}1 → {0,1}			𝑅 𝑓 = Θ(𝑛) and 𝑄 𝑓 = Θ 𝑛

How many queries to the input 𝑥 does the algorithm
need to make? Answer denoted 𝑅(𝑓) and 𝑄(𝑓), when
the algorithm is classical and quantum, respec1vely

Classical query

Quantum query

𝑖 ↦ 𝑥%

𝑖 |𝑎⟩ ↦ |𝑖⟩|𝑎 + 𝑥%⟩

Let 𝑓: Σ% → {0,1} and suppose an algorithm computes 𝑓 𝑥 correctly
with probability ≥ 2/3 for all 𝑥

The adversary quan<ty
Every func1on 𝑓: Σ% → {0,1} can be associated with its adversary
quan1ty Adv(𝑓) which is a non-nega1ve real number

Theorem [Høyer, Lee, Špalek 07; Lee, Mi]al, Reichardt, Špalek 10]

𝑄 𝑓 = Θ(Adv 𝑓)

Composi4on theorems

• OR: let 𝑔 𝑥, 𝑦 = 𝑓) 𝑥 ∨ 𝑓*(𝑦), then Adv 𝑔 * ≤ Adv 𝑓) * + Adv 𝑓* *

• SWITCH-CASE: let ℎ 𝑥 = 𝑔9 : (𝑥), then Adv ℎ ≤ 𝑂 Adv 𝑓 +	max
;
	Adv(𝑔;)

Quantum divide and conquer framework
Suppose 𝑓 is computed as an AND-OR formula of 𝑓), … , 𝑓< and 𝑓=>?,

then Adv 𝑓 * ≤ ∑@A)< Adv 𝑓@ * + 𝑂 𝑄 𝑓=>: *

Suppose 𝑓 is computed by first compuUng 𝑠 = 𝑓=>?(𝑥) and then some funcUon 𝑔;,
then Adv 𝑓 ≤ 𝑂 𝑄 𝑓=>? +max

;
Adv 𝑔;

These strategies combine the adversary method (for the term where the constant
maWers) with the world of quantum algorithms (which are easier to design)

Other strategies are possible using other quantum adversary primiUves

Applica<ons
Simpler analysis with slightly improved upper bounds:

• Regular languages: Deciding whether a string over {0,1,2} contains 20∗2. This is
a key algorithmic result in the query complexity trichotomy for regular languages
[Aaronson, Grier, Schaeffer 19]

• String minimality problems: Decision versions of Minimal String Rota7on and
Minimal Suffix. Simpler, 7ghter analysis than [Akmal, Jin 22]

The first nontrivial quantum algorithms for subsequence problems:

• 𝒌-Increasing Subsequence

• 𝒌-Common Subsequence

𝑂 𝑛 log 𝑛

𝑂 𝑛 log& 𝑛

𝑂 𝑛 log'(/* 𝑛

𝑂 𝑛*/' log(+, 𝑛

Quantum query
complexity

Regular languages
Let Σ = {0,1,2}, 𝑓%: Σ% → {0,1} such that 𝑓% 𝑥 = 1 iff 𝑥 ∈ Σ∗20∗2Σ∗

02002110 02102112✅ ⛔

Observa1on: let 𝑔% 𝑥 = (𝑥./01 ∈ Σ∗20∗) ∧ (𝑥23451 ∈ 0∗2Σ∗), then

𝑓% 𝑥 = 𝑓%/7 𝑥./01 ∨ 𝑓%/7 𝑥23451 ∨ 𝑔%(𝑥)

Let 𝑎 𝑛 = Adv(𝑓%), then 𝑎 𝑛 7 ≤ 2𝑎7 𝑛/2 + 𝑂 𝑄 𝑔%
7
	

But 𝑄 𝑔% = 𝑂(𝑛), so 𝑎 𝑛 = 𝑂 𝑛 log 𝑛

𝑘-Increasing Subsequence
A subsequence of a string is obtained by taking a (not necessarily
consecu1ve) subset of characters, without changing their order
𝒌-Increasing Subsequence (𝒌-IS): given 𝑥 ∈ Σ%, Σ ordered, does 𝑥
contain a strictly increasing subsequence of length 𝑘?

56122941 𝑘 ≤ 3 ✅

𝑘 > 3 ⛔

Can we do beWer?

𝑅(𝑘-IS) = Θ(𝑛) for 𝑘 ≥ 2
𝑄(2-IS) = Θ(𝑛) equivalent to unstructured search (𝑥) ≥ 𝑥* ≥ ⋯ ≥ 𝑥+)

𝑄(𝑘-IS) = O 𝑛F/ FH) using [Ambainis 03]

𝑘-Increasing Subsequence

Theorem. For any fixed 𝑘, 𝑄(𝑘-IS) = 𝑂 𝑛 log< =>? /7 𝑛

Let Σ be an ordered set, 𝑥 ∈ Σ% contains a 𝑘-IS iff
• 𝑥!"#$ contains a 𝑘-IS or
• 𝑥%&'($ contains a 𝑘-IS or

• 𝑥 contains a 𝑘-IS with 1 < 𝑗 < 𝑘 elements in 𝑥!"#$ and 𝑘 − 𝑗 elements in 𝑥%&'($

Let 𝑎F 𝑛 =	adversary	quantity	for	𝑘-IS	with	input	length	𝑛,	then

𝑎F 𝑛 * ≤ 2𝑎F 𝑛/2 * + 𝑂 a
IA)

FJ)
𝑎I 𝑛 + 𝑛 log 𝑛

*

Result follows by inducUon on 𝑘

Composite 𝑘-IS: Can be detected with 𝑂(log 𝑛)
computa7ons of 𝑗-IS, (𝑘 − 𝑗)-IS, and Grover search

Detec<ng composite 𝑘-IS
𝑥 contains a 𝑘-IS with 1 < 𝑗 < 𝑘 elements in 𝑥!"#$ and 𝑘 − 𝑗 elements in 𝑥%&'($
Can be detected with 𝑂(log 𝑛) computaUons of 𝑗-IS, (𝑘 − 𝑗)-IS, and Grover search

Find the smallest element of Σ that
is at the end of a 𝑗-IS in 𝑥-./0, 𝛼

Find the largest element of Σ that is at
the start of a (𝑘 − 𝑗)-IS in 𝑥12340, 𝛽

If 𝛼 < 𝛽, then output 1

𝛼 𝛽𝑥 =

• Naively O log(Σ) 𝑎" 𝑛/2 + 𝑎#$" 𝑛/2

• Can do 𝑂 𝑎" 𝑛/2 + 𝑎#$" 𝑛/2 + 𝑛 log 𝑛 using randomized search: pick a uniformly
random posi7on 𝑎 ∈ 𝑛/2 , use 𝑗-IS algorithm to compare 𝑥% and 𝛼, if 𝛼 ≤ 𝑥% (say), then pick a
uniformly random posi7on from 𝑆 = {𝑏 ∈ 𝑛/2 ∣ 𝑥& ≤ 𝑥%} using Grover search, and repeat

𝑘-Common Subsequence

𝒌-Common Subsequence (𝒌-CS): given 𝑥, 𝑦 ∈ Σ% do 𝑥 and 𝑦 share a
subsequence of length 𝑘?

𝑅(𝑘-CS) = Θ(𝑛) for 𝑘 ≥ 1

𝑄(1-CS) = Θ(𝑛*/T) biparUte element disUnctness [Aaronson, Shi 04; Ambainis 03]

𝑄(𝑘-CS) = O 𝑛*F/ *FH) using [Ambainis 03]

Can we do beWer?

E	i	n	s	t	e	i	n
e	n	t	w	i	n	e	d

𝑘 ≤ 4 ✅

𝑘 > 4 ⛔

𝑘-Common Subsequence
Divide the two input strings 𝑥 and 𝑦 into 𝑚 parts each. Then, a 𝑘-CS
can either be simple or composite
• A simple 𝑘-CS is a 𝑘-CS formed by symbols within a single part of 𝑥

and a single part of 𝑦
• A composite 𝑘-CS is any 𝑘-CS that is not simple

Examples with 𝑚 = 3

Simple Composite

Detec<ng composite 𝑘-CS

Only a constant number of possible configuraUons (depends on constants 𝑚 and 𝑘)

𝑂 V
UV?

=>?

𝑎U 𝑛 log 𝑛

Let 𝑎F 𝑛 =	adversary	quantity	for	𝑘-CS	with	input	length	𝑛
𝑚 = 7, 𝑘 = 10

Detec<ng simple 𝑘-CS
1. Compute 𝐴 ∈ 0,1 Y×Y such that 𝐴[U = 1 iff the 𝑖th part of 𝑥 and
the 𝑗th part of 𝑦 have a common symbol: 𝑂 𝑚7𝑛7/< = 𝑂(𝑛7/<)

2. Need to compute OR
of at most 2𝑚 − 1 copies
of 𝑘-CS of size 𝑛/𝑚:	
2𝑚 − 1	𝑎= 𝑛/𝑚

𝑚 = 5

𝑥,	𝑥*	𝑥' 𝑥5	𝑥&	𝑥6 𝑥7	𝑥8	𝑥9 𝑥,:	𝑥,,	𝑥,* 𝑥,'	𝑥,5	𝑥,&

𝑦,	𝑦*	𝑦' 𝑦5	𝑦&	𝑦6 𝑦7	𝑦8	𝑦9 𝑦,:	𝑦,,	𝑦,* 𝑦,'	𝑦,5	𝑦,&

Overall: 𝑂 𝑛7/< + 2𝑚 − 1	𝑎= 𝑛/𝑚

Recall: suppose 𝑓 is computed by first
compuAng 𝑠 = 𝑓"#$(𝑥) and then some
funcAon 𝑔;, then
Adv 𝑓 ≤ 𝑂 𝑄 𝑓"#$ +max

;
Adv 𝑔;

PuGng it together
Claim. 𝑎= 𝑛 = 𝑂(𝑛7/< log=>? 𝑛)

• Detec1ng composite 𝑘-CS: 𝑂 ∑UV?=>? 𝑎U 𝑛 log 𝑛
• Detec1ng simple 𝑘-CS: 𝑂 𝑛7/< + 2𝑚 − 1 𝑎= 𝑛/𝑚

by induc7on on 𝑘

Master Theorem: 𝑎= 𝑛 = 𝑂 𝑛7/< log=>? 𝑛
provided logY 2𝑚 − 1 < 2/3, which is sa1sfied with 𝑚 = 7

𝑎= 𝑛 ≤ 2𝑚 − 1	𝑎= 𝑛/𝑚 + 𝑂 𝑛7/< log=>? 𝑛 	

Summary
We have introduced a divide-and-conquer framework for developing quantum algorithms using
classical reasoning about division into subproblems, with speedup from quantum combining
opera7ons and the use of quantum subrou7nes. Applica7ons:
• Simpler analysis for regular languages and minimal substring problems with 7ghter bounds

•]𝑂 𝑛 algorithm for 𝑘-IS

•]𝑂 𝑛'/) algorithm for 𝑘-CS

Open problems
• Can we apply quantum divide and conquer to search problems? For example, is there a quantum

divide-and-conquer algorithm for minimum finding?

• Can we find applica7ons of quantum divide and conquer using combining func7ons other than
AND-OR formulas and SWITCH-CASE?

• Can we obtain super-quadra7c speedups using quantum divide and conquer?

Appendix: adversary quan<ty defini<on

Let f : Σn → {0, 1}. Then

Adv(f) = max
Γ

‖Γ‖

maxi∈{1,...,n} ‖Γ‖
,

where the max is taken over |Σ|n × |Σ|n real symmetric matrices Γ with
f(x) = f(y) =⇒ Γxy = 0 and

(Γi)xy =

{

Γxy if xi %= yi,

0 if xi = yi.

