Quantum divide and conquer

Daochen Wang (University of Maryland)
|QC Waterloo, full version: arXiv:2210.06419

Andrew M Childs Robin Kothari Matt Kovacs-Deak Aarthi Sundaram

University of Maryland Microsoft University of Maryland Microsoft
(—Google)

Examples of quantum speedups

Some problems admit exponential qguantum speedup

Factoring, discrete logarithm, solving Pell’s equation, quantum simulation, EXIT-finding in glued-
trees graph, graph connectivity using cut queries, Forrelation, Yamakawa-Zhandry problem...

Others admit polynomial quantum speedup

Unstructured search, minimum finding, dynamic programming, graph properties using adjacency
matrix queries, Monte Carlo mean estimation, element distinctness, formula evaluation...

Can we find more problems with quantum speedup?

Tools for designing quantum algorithms

* Fourier sampling

* Grover search/amplitude amplification
* Quantum walk

* Span programs

» Adiabatic optimization/QAOA

* Quantum signal processing/QSVT

Divide and conquer

1. Divide a problem into subproblems
2. Recursively solve each subproblem
3. Combine the solutions of the subproblems to solve full prob

|l | 8 | 6 | 7|53]0]9

Example: Mergesort

Recurrence:

C(n) =2C(n/2) + 0(n) | 6|7 |8||0o]|3]|5]09

\

C(n) = O(nlogn) ol1(3|5|6|7]|8]9

From classical to quantum divide and conquer

Simple example: OR(x) =x; VX, V-V x,
Divide and conquer: OR(x) = OR(OR(xjeft), OR(Xright))
Classical: Cn)<2Cc(n/2) » Cn)<n

Quantum: C(n) <V2C(n/2) » C() <+n ?
0

From classical to quantum divide and conquer

Divide a problem of size n into a instances of size n/b each
e Typical divide-and-conquer recurrence:

C(n) <alC(n/b)+ Caux(n)\

Classical cost of solving auxiliary problem

Query complexity

The query model is a useful model in which we can provably compare
the power of classical and quantum computers

Let f: X" — {0,1} and suppose an algorithm computes f (x) correctly

with probability = 2/3 for all x
How many queries to the input x does the algorithm Classical query

need to make? Answer denoted R(f) and Q(f), when L X
the algorithm is classical and quantum, respectively Quantum query

i)la) = [i)la + x;)

Example: OR: {0,1}® - {0,1} R(f) = O(n) and Q(f) = O(/n) \ /

The adversary quantity

Every function f: X" — {0,1} can be associated with its adversary
quantity Adv(f) which is a non-negative real number

Theorem

Q(f) = 6(Adv(f))

Composition theorems

* OR:let g(x,y) = fi(x) V f2(¥), then Adv(g)?* < Adv(f1)? + Adv(f3)?
e SWITCH-CASE: let h(x) = g (x), then Adv(h) < O(Adv(f)) + max Adv(g;)

Quantum divide and congquer framework

Suppose f is computed as an AND-OR formula of f;, ..., f, and f2"%,
then Adv(f)2 < ¥, Adv(f)? + 0(Q(f2+%))

Suppose f is computed by first computing s = f*"*(x) and then some function g,
then Adv(f) < O(Q(faux)) + max Adv(gs)
S

These strategies combine the adversary method (for the term where the constant
matters) with the world of quantum algorithms (which are easier to design)

Other strategies are possible using other quantum adversary primitives

Applications

Quantum query

Simpler analysis with slightly improved upper bounds: complexity

* Regular languages: Deciding whether a string over {0,1,2} contains 20*2. This is

a key algorithmic result in the query complexity trichotomy for regular languages 0(y/nlogn)

* String minimality problems: Decision versions of Minimal String Rotation and -
Minimal Suffix. Simpler, tighter analysis than 0 (V nlog ")

Regular languages
Let £ = {0,1,2}, f,,;: ™ — {0,1} such that f,,(x) = 1 iff x € £*20"2X"
02002110 02102112 ©
Observation: let g, (x) = (Xjerr € Z720%) A (Xyigne € 072X7), then
fa(x) = fr2(Xiere) V fn)2 (xright) V gn(x)
Let a(n) = Adv(f,), then a(n)? < 2a*(n/2) + O(Q(gn))2
But Q(g,) = 0(\/n), so a(n) = 0(y/nlogn)

k-Increasing Subsequence

A subsequence of a string is obtained by taking a (not necessarily
consecutive) subset of characters, without changing their order

k-Increasing Subsequence (k-1S): given x € X", X ordered, does x
contain a strictly increasing subsequence of length k?

k <3

56122941 >3 O

R(k-1S) = O(n) fork = 2
Q(2-1S) = 0(y/n) — equivalent to unstructured search (x; = x, = -+ = x,)
Q(k-15) = O(n*/k+1) ysing

Can we do better?

k-Increasing Subsequence

Theorem. For any fixed k, Q (k-1S) = O(y/nlog3~1/2)

Let X be an ordered set, x € X™ contains a k-IS iff

* Xjeft CONtains a k-IS or Composite k-IS: Can be detected with O(logn)

* Xright contains a k-IS or / computations of j-IS, (k — j)-IS, and Grover search

* x contains a k-ISwith 1 < j < k elements in xjeft and k — j elements in Xright

Let a; (n) = adversary quantity for k-IS with input length n, then

ar(n)? < 2a,(n/2)* +0 <Z%_1 ((aj(n) +/n) logn)2>

J=1

Result follows by induction on k

Detecting composite k-IS

x contains a k-IS with 1 < j < k elements in Xjer; and k — j elements in Xpjght
Can be detected with O(logn) computations of j-IS, (k — j)-IS, and Grover search

X = a ‘ p
Find the smallest element of X that Find the largest element of X that is at
is at the end of a j-IS in Xjef, @ the start of a (k — j)-ISin Xyight, B

If a < [, then output 1

* Naively O (log(IZI) (aj(n/Z) + ak—j(n/z)))

« Cando O ((aj(n/Z) +ag-j(n/2) + Vn) log n) using randomized search: pick a uniformly

random position a € [n/2], use j-IS algorithm to compare x, and a, if a < x, (say), then pick a
uniformly random position from S = {b € [n/2] | x;, < x,} using Grover search, and repeat

k-Common Subsequence

k-Common Subsequence (k-CS): given x,y € £™ do x and y share a
subsequence of length k?

Einstein k<4 02
entwined k>4 ©

R(k-CS) =0O(n)fork =1
Q(1-CS) = B(n?/3)— bipartite element distinctness
Q (k-CS) = 0(n2k/(2k+1) ysing

Can we do better?

k-Common Subsequence

Divide the two input strings x and y into m parts each. Then, a k-CS
can either be simple or composite

* A simple k-CS is a k-CS formed by symbols within a single part of x
and a single part of y

* A composite k-CS is any k-CS that is not simple

Examples withm =3

N e

Simple Composite

Detecting composite k-CS

Let a; (n) = adversary quantity for k-CS with input length n

Only a constant number of possible configurations (depends on constants m and k)

P N

Y t

) GID ;D &G

- G &b a) D G &
D G &> @&)
- [|) GD

k—1

0 z a;j(n)logn

j=1

Detecting simple k-CS

1. Compute A € {0,1}™™ such that A;; = 1 iff the ith part of x and
the jth part of y have a common symbol: 0(m?n?/3) = 0(n?/3)

X1 X2 X3 X4 X5 Xg X7 Xg Xg X10 X11 X12 X113 X14 X15

2. Need to compute OR
of at most 2m — 1 copies
of k-CS of size n/m:

V2m — 1 a,(n/m)

Y1Y2Y3 Y4 Y5 Ve Y7 Y8 Yo Y10 Y11 Y12 Y13 Y14 Y15

4)

Recall: suppose f is computed by first
computing s = f"*(x) and then some

. 2/3 function g, then
Overa”. O(Tl /) + \/Zm — 1 ak (n/m) \Adv(f) < O(Q(faux)) + mSElXAdV(gS)

Putting it together
Claim. a, (n) = 0(n?/3logk~1 n)

 Detecting composite k-CS: O(Z] 1 a;(n) logn)

- Detecting simple k-CS: 0(n?/3) + vV2m — 1 a; (n/m)
‘ by induction on k 0.76

0.74

ak(n) S \/Zm — 1 ak(n/m) + 0(n2/3 logk_l Tl) 0.72

0.70

0.68

Master Theorem: a; (n) = 0(n?/3logh~1n) B
provided log,, (V2m — 1) < 2/3, which is satisfied with m = 7

summary

We have introduced a divide-and-conquer framework for developing quantum algorithms using
classical reasoning about division into subproblems, with speedup from quantum combining
operations and the use of quantum subroutines. Applications:

» Simpler analysis for regular languages and minimal substring problems with tighter bounds
« 0(y/n) algorithm for k-IS
» 0(n?/3) algorithm for k-CS

Open problems

e Can we apply quantum divide and conquer to search problems? For example, is there a quantum
divide-and-conquer algorithm for minimum finding?

e Can we find applications of quantum divide and conquer using combining functions other than
AND-OR formulas and SWITCH-CASE?

e Can we obtain super-quadratic speedups using quantum divide and conquer?

Appendix: adversary quantity definition

Let f: ¥™ — {0,1}. Then

Adv(f) = max I

I' maX;e{1,...,n} 1T

where the max is taken over |3|" x |X|™ real symmetric matrices I' with
f(x) = fly) = Ty, =0 and

0 if x; = v;.

