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Quantum computing basics

I Classical computers use bits, quantum
computers use qubits.

I A single qubit can be in a state that is a
superposition of 0 and 1. n qubits can be
in a state that is a superposition over all
2n bitstrings of length n.

I Quantum computers can efficiently
manipulate these quantum states to solve
certain problems much faster than
classical computers.
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RL in the quantum generative model

I We consider a γ-discounted Markov Decision Process (MDP)
given a classical generative model G for sampling state
transitions.

I Fact: assuming G is given as a classical circuit with N gates,
then we can efficiently convert G to a quantum circuit G with
O(N) gates that can sample state transitions in superposition.

I We develop quantum algorithms that use G to solve the MDP.
We call G the quantum generative model and the number of
times an algorithm uses G its quantum sample complexity.



Summary of quantum speedups

Notation: S = size of state space, A = size of action space,
Γ = 1/(1− γ), ε = accuracy
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1This equals the quantum time complexity up to log factors assuming
access to quantum random access memory (QRAM).



Quantum speedups from applying quantum mean
estimation and maximum finding to value iteration

I Quantum mean estimation (Montanaro, 2015) estimates E[X ]
to accuracy ε using Õ(

√
Var[X ]/ε) quantum samples of X .

I Quantum maximum finding (Dürr and Høyer, 1996) finds the
maximum of a size-n list using Õ(

√
n) quantum queries to it.

I They can speed up, e.g., the value iteration algorithm for v∗:

v ← 0 ∈ RA

for ` = 1, 2, . . . , Õ( 1
1−γ ) do

for s ∈ S do
v(s)← maxa∈A{r(s, a) + γE[v(s ′) | s ′ ∼ p(·|s, a)]}

end

end

I But above value iteration is highly sub-optimal so we speed
up a modern version (Sidford et. al., 2018; Wainwright, 2019)
which gives us the (near-)optimal bounds in the summary.
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