Quantum algorithms for reinforcement learning with a generative model¹

Daochen Wang (University of Maryland) QISE-NET June Meeting 2021

Aarthi Sundaram

Robin Kothari

Ashish Kapoor

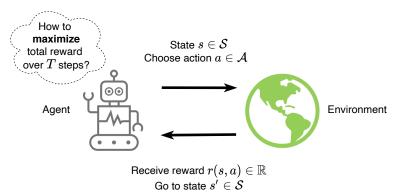
Martin Roetteler

(Microsoft Research)

¹Full paper to appear at ICML 2021.

Reinforcement Learning (RL)

Main question of RL: how should an agent interact with its environment to maximize its total reward?



Note: s' is random and follows some probability distribution $p(\cdot | s, a)$. In the *generative model* we assume quantum sample access to these distributions for any (s, a) of our choice, i.e., access to the oracle

$$\mathcal{O}: \ket{s}\ket{a}\ket{0} \ket{0} \mapsto \ket{s}\ket{a} \sum_{s' \in \mathcal{S}} \sqrt{p(s' \mid s, a)} \ket{s'}\ket{\psi_{s'}}.$$

RL has many applications in engineering, finance, gaming, natural language processing, robotics, and so on

	Playing Go	Trading stocks	
States (\mathcal{S})	Board positions	Market positions	
Actions (\mathcal{A})	Valid moves	Buy or sell a stock	
Rewards	win: +1 draw: 0 lose: -1	Net profit	

Image credit: Nature

Quantum algorithms for RL

Summary of quantum speedups

Notation: S = |S|, A = |A|, T = number of steps, ϵ = error; q^* , v^* , π^* = optimal (Q-value function, value function, policy).

Goal: output an	Classical sample complexity	Quantum sample complexity	
ϵ -accurate estimate of	Upper and lower bound	Upper bound	Lower bound
q^*	$\frac{SAT^3}{\epsilon^2}$	$\frac{SAT^{1.5}}{\epsilon}$	$\frac{SAT^{1.5}}{\epsilon}$
v^* , π^*	$\frac{SAT^3}{\epsilon^2}$	$\min\{\frac{SAT^{1.5}}{\epsilon}, \frac{S\sqrt{A}T^3}{\epsilon}\}$	$\frac{S\sqrt{A}T^{1.5}}{\epsilon}$

Quantum speedups from applying quantum mean estimation and maximum finding to value iteration

- ► Quantum mean estimation (Montanaro, 2015) estimates E[X] to error e using Õ(√Var[X]/e) quantum samples of X.
- ► Quantum maximum finding (Dürr and Høyer, 1996) finds the maximum of a size-n list using Õ(√n) quantum queries to it.

► They can speed up, e.g., the value iteration algorithm for
$$v^*$$

 $v \leftarrow \mathbf{0} \in \mathbb{R}^A, \ \gamma \leftarrow 1 - 1/T$
for $\ell = 1, 2, \dots, L = \tilde{O}(T)$ do
 $\begin{vmatrix} \mathbf{for} \ s \in S \ \mathbf{do} \\ | \ v(s) \leftarrow \max_{a \in \mathcal{A}} \{r(s, a) + \gamma \mathbb{E}[v(s') | s' \sim p(\cdot|s, a)]\} \\ \mathbf{end} \end{vmatrix}$
end

But this value iteration turns out to be highly sub-optimal so we speed up a modern variant (Sidford et. al., 2018) instead which gives us the (near-)optimal bounds in the summary. Thank you for your attention!

Open problems

Thank you for your attention! Here are some of our open problems:

- 1. Can we close the gap between the upper and lower bounds for computing v^* and π^* ?
- 2. Can we quantize model-based classical algorithms? As a first step, can we get a tight bound for quantum distribution learning in ℓ_1 -norm?
- 3. Can we circumvent our quantum lower bounds? We note that exponential speed-ups exist for finding $v^*(s_0)$ and $\pi^*(s_0)$, for a fixed $s_0 \in S$, in convoluted cases based on the glued-trees construction (Childs et. al., 2002).