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Reinforcement Learning (RL)



Main question of RL: how should an agent interact with its
environment to maximize its total reward?

An RL algorithm is typically required to output (i) an optimal policy
π∗ : S → A, (ii) the optimal value function v∗ : S → R, and (iii) the
optimal Q-value function q∗ : S ×A → R.



RL has many applications in robotics, engineering, gaming,
natural language processing, finance, and so on

Playing Go Self-driving cars

States (S) Board positions Cells of a finite 2D grid

Actions (A) Valid moves {up, down, left, right, stay}

Rewards
win: +1
draw: 0
lose: -1

destination cell reached: 1
destination cell not reached: -1

Image credit: Nature



Classical and quantum generative models (1/2)

I Classical RL often assumes we have query access to an oracle
C that can, for any (s, a) ∈ S ×A of our choice, sample
s ′ ∈ S with probability p(s ′|s, a).

I C is known as a (classical) generative model.

I If we have the circuit for C, then we can systematically and
efficiently construct a quantum oracle Q such that

Q : |s〉 |a〉 |0〉 |0〉 7→ |s〉 |a〉
∑
s′

√
p(s ′|s, a)

∣∣s ′〉 ∣∣ψs′,s,a

〉
, (1)

where (s, a, s ′) ∈ S ×A× S and {
∣∣ψs′,s,a

〉
}s′,s,a are some

quantum states.

I We call Q a quantum generative model.



Classical and quantum generative models (2/2)
Why Q : |s〉 |a〉 |0〉 |0〉 7→ |s〉 |a〉

∑
s′

√
p(s ′|s, a) |s ′〉

∣∣ψs′,s,a

〉
?

I The circuit C must be a deterministic circuit taking two inputs
and producing one output:

S ×A 3 (s, a)
C

C(s, a, x) ∈ S
{0, 1}m 3 x

(2)

such that Prx∼U{0,1}m(C(s, a, x) = s ′) = p(s ′|s, a).

I We can quantize C as per usual to give a quantum circuit Q′:

CS×A 3 |s, a〉
Q′

|s, a〉
(C2)⊗m 3 |x〉 |x〉

CS 3 |0S〉 |C(s, a, x)〉
(3)

I Appending one Hadamard gate to each of the m qubits in the
|x〉 register before running Q′ and changing the input in the
second register to ket of the all-zeros bitstring gives Q.



Quantum algorithms for RL



Summary of quantum speedups

Notation: S := |S|, A := |A|, Γ := (1− γ)−1, ε := max error;
q∗, v∗, π∗ := optimal (Q-value function, value function, policy).

Goal:
output an
ε-accurate
estimate of

Classical query complexity2 Quantum query complexity (our work)

Upper and lower bound Upper bound Lower bound

q∗ SAΓ3

ε2
SAΓ1.5

ε
SAΓ1.5

ε

v∗, π∗ SAΓ3

ε2 min{SAΓ1.5

ε , S
√
AΓ3

ε } S
√
AΓ1.5

ε

2Sidford et. al. (2018) and Azar et. al. (2013)



Quantum speedups from applying quantum mean
estimation and maximum finding to value iteration

I Quantum mean estimation (Montanaro, 2015) estimates E[X ]
to error ε using Õ(

√
Var[X ]/ε) quantum queries to X .

I Quantum maximum finding (Dürr and Høyer, 1996) finds the
maximum of a size-n list using Õ(

√
n) quantum queries to it.

I They can speed up, e.g., the value iteration algorithm for v∗:

v ← 0 ∈ RA

for ` = 1, 2, . . . , L = Õ(Γ) do
for s ∈ S do

v(s)← maxa∈A{r(s, a) + γE[v(s ′) | s ′ ∼ p(·|s, a)]}
end

end

I But this value iteration turns out to be highly sub-optimal so
we speed up a modern variant (Sidford et. al., 2018) instead
which gives us the (near-)optimal bounds in the summary.



The total variance technique: a technical challenge

Consider n random variables Y1, . . . ,Yn such that we know an
upper bound B on their total standard deviation. Suppose we have
(appropriate) query access to the Yi s and wish to estimate each of
their means such that the total error is ≤ ε.

1. Chebyshev’s inequality easily shows that Õ(B2/ε2) queries
suffice for this task classically. Quantumly we would like to
have Õ(B/ε), a quadratic speedup.

2. Problem: quantum algorithms that try to emulate
Chebyshev’s inequality (Montanaro, 2015; Hamoudi and
Magniez, 2018) require an upper bound on the variance of
each Yi to work and simply using B2 for each leads to a
bound of Õ(nB/ε) which is highly sub-optimal.

3. We solve this problem by showing that getting a total error of
ε+ η can be achieved using Õ(B/ε) quantum queries, where
η > 0 is some small additional error. We then show η can be
dealt with by other parts of our algorithm.



Quantum lower bounds proved by a reduction from the
computation of certain Boolean functions

I We have quantum query lower
bounds on computing Boolean
functions {PARITY, OR,
approximate counting}. By
quantum composition theorems
(Reichardt, 2011), we also have
quantum query lower bounds on
compositions of these functions.

I We reduce the computation of such
compositions to the computation of
q∗, v∗, and π∗ on certain hard RL
instances that we construct. This
implies our quantum lower bounds.

......  actions
in total

......



Open problems

Here are some open problems:

1. Can we circumvent our quantum lower bounds by asking for
particular entries of q∗, v∗, or π∗, or maybe these quantities
encoded in a quantum state?

2. Can we close the gap between the upper and lower bounds for
computing v∗ and π∗?

3. Our quantum algorithms quantize model-free classical
algorithms. Can we quantize model-based ones?

Thank you for your attention!
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