Quantum algorithms for reinforcement learning with a generative model¹

Daochen Wang (University of Maryland) QTML 2021

Aarthi Sundaram

Robin Kothari

Ashish Kapoor

Martin Roetteler

(Microsoft Research)

¹Full paper appears in ICML 2021:

http://proceedings.mlr.press/v139/wang21w.html

Reinforcement Learning (RL)

Main question of RL: how should an agent interact with its environment to maximize its total reward?

Receive reward $\gamma^i r(s,a)$ at step $i \in \mathbb{Z}_{\geq 0}$ $(\gamma \in [0,1))$ Go to state $s' \in S$ with probability p(s'|s,a)

An RL algorithm is typically required to output (i) an optimal policy $\pi^* \colon S \to A$, (ii) the optimal value function $v^* \colon S \to \mathbb{R}$, and (iii) the optimal Q-value function $q^* \colon S \times A \to \mathbb{R}$.

RL has many applications in robotics, engineering, gaming, natural language processing, finance, and so on

	Playing Go	Self-driving cars	nature
States (\mathcal{S})	Board positions	Cells of a finite 2D grid	
Actions (\mathcal{A})	Valid moves	{up, down, left, right, stay}	At last – a computer program that can beat a champion Co player for the
Rewards	win: +1 draw: 0 lose: -1	destination cell reached: 1 destination cell not reached: -1	ALL SYSTEMS GO

Image credit: Nature

Classical and quantum generative models (1/2)

- Classical RL often assumes we have query access to an oracle C that can, for any (s, a) ∈ S × A of our choice, sample s' ∈ S with probability p(s'|s, a).
- C is known as a (classical) generative model.
- If we have the circuit for C, then we can systematically and efficiently construct a quantum oracle Q such that

$$Q: |s\rangle |a\rangle |0\rangle |0\rangle \mapsto |s\rangle |a\rangle \sum_{s'} \sqrt{p(s'|s,a)} |s'\rangle |\psi_{s',s,a}\rangle, \quad (1)$$

where $(s, a, s') \in S \times A \times S$ and $\{|\psi_{s',s,a}\rangle\}_{s',s,a}$ are some quantum states.

▶ We call *Q* a quantum generative model.

Classical and quantum generative models (2/2) Why $Q : |s\rangle |a\rangle |0\rangle |0\rangle \mapsto |s\rangle |a\rangle \sum_{s'} \sqrt{p(s'|s,a)} |s'\rangle |\psi_{s',s,a}\rangle$?

> The circuit C must be a *deterministic* circuit taking two inputs and producing one output:

such that $\Pr_{x \sim U\{0,1\}^m}(\mathcal{C}(s, a, x) = s') = p(s'|s, a).$

• We can quantize C as per usual to give a quantum circuit Q':

Appending one Hadamard gate to each of the *m* qubits in the |x⟩ register before running Q' and changing the input in the second register to ket of the all-zeros bitstring gives Q.

Quantum algorithms for RL

Summary of quantum speedups

Notation: S := |S|, A := |A|, $\Gamma := (1 - \gamma)^{-1}$, $\epsilon := \max$ error; q^* , v^* , $\pi^* :=$ optimal (Q-value function, value function, policy).

Goal: output an	Classical query complexity ²	Quantum query complexity (our work)	
ϵ -accurate estimate of	Upper and lower bound	Upper bound	Lower bound
<i>q</i> *	$\frac{SA\Gamma^3}{\epsilon^2}$	$\frac{SA\Gamma^{1.5}}{\epsilon}$	$\frac{SA\Gamma^{1.5}}{\epsilon}$
ν*, π*	$\frac{SA\Gamma^3}{\epsilon^2}$	$\min\{\frac{SA\Gamma^{1.5}}{\epsilon},\frac{S\sqrt{A}\Gamma^{3}}{\epsilon}\}$	$\frac{S\sqrt{A}\Gamma^{1.5}}{\epsilon}$

²Sidford et. al. (2018) and Azar et. al. (2013)

Quantum speedups from applying quantum mean estimation and maximum finding to value iteration

- Quantum mean estimation (Montanaro, 2015) estimates $\mathbb{E}[X]$ to error ϵ using $\tilde{O}(\sqrt{\operatorname{Var}[X]}/\epsilon)$ quantum queries to X.
- ► Quantum maximum finding (Dürr and Høyer, 1996) finds the maximum of a size-n list using Õ(√n) quantum queries to it.
- ► They can speed up, e.g., the value iteration algorithm for v^* : $v \leftarrow \mathbf{0} \in \mathbb{R}^A$ for $\ell = 1, 2, ..., L = \tilde{O}(\Gamma)$ do $\begin{vmatrix} \mathbf{for} \ s \in S \ \mathbf{do} \\ | \ v(s) \leftarrow \max_{a \in \mathcal{A}} \{r(s, a) + \gamma \mathbb{E}[v(s') | \ s' \sim p(\cdot|s, a)]\} \\ end$ end
- But this value iteration turns out to be highly sub-optimal so we speed up a modern variant (Sidford et. al., 2018) instead which gives us the (near-)optimal bounds in the summary.

The total variance technique: a technical challenge

Consider *n* random variables Y_1, \ldots, Y_n such that we know an upper bound *B* on their *total* standard deviation. Suppose we have (appropriate) query access to the Y_i s and wish to estimate *each* of their means such that the *total* error is $\leq \epsilon$.

- 1. Chebyshev's inequality easily shows that $\tilde{O}(B^2/\epsilon^2)$ queries suffice for this task classically. Quantumly we would like to have $\tilde{O}(B/\epsilon)$, a quadratic speedup.
- 2. Problem: quantum algorithms that try to emulate Chebyshev's inequality (Montanaro, 2015; Hamoudi and Magniez, 2018) require an upper bound on the variance of each Y_i to work and simply using B^2 for each leads to a bound of $\tilde{O}(nB/\epsilon)$ which is highly sub-optimal.
- 3. We solve this problem by showing that getting a total error of $\epsilon + \eta$ can be achieved using $\tilde{O}(B/\epsilon)$ quantum queries, where $\eta > 0$ is some small additional error. We then show η can be dealt with by other parts of our algorithm.

Quantum lower bounds proved by a reduction from the computation of certain Boolean functions

- We have quantum query lower bounds on computing Boolean functions {PARITY, OR, approximate counting}. By quantum composition theorems (Reichardt, 2011), we also have quantum query lower bounds on compositions of these functions.
- We reduce the computation of such compositions to the computation of q^{*}, v^{*}, and π^{*} on certain hard RL instances that we construct. This implies our quantum lower bounds.

Open problems

Here are some open problems:

- 1. Can we circumvent our quantum lower bounds by asking for particular entries of q^* , v^* , or π^* , or maybe these quantities encoded in a quantum state?
- 2. Can we close the gap between the upper and lower bounds for computing v^* and π^* ?
- 3. Our quantum algorithms quantize model-free classical algorithms. Can we quantize model-based ones?

Thank you for your attention!