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Reinforcement Learning (RL)



Main question of RL: how should an agent interact with its
environment to maximize its total reward?

" Goal:

_ maximize States € S
./ totalreward ™\ Choose action a € A

+ after 0o steps.
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Receive reward yir (s, a) at stepi € Z>q (v € [0,1))
Go to state s’ € S with probability p(s’|s, a)

An RL algorithm is typically required to output (i) an optimal policy
7. 8§ — A, (ii) the optimal value function v* : S — R, and (iii) the
optimal Q-value function ¢* : S x A — R.



RL has many applications in robotics, engineering, gaming,
natural language processing, finance, and so on

Playing Go Self-driving cars
States (S) Board positions Cells of a finite 2D grid
Actions (A) Valid moves {up, down, left, right, stay} 2 %) :
- ALL SYSTEMS GO
win: +1 destinati . ]
estination cell reached: 1
Rewards draw: 0

destination cell not reached: -1
lose: -1

Image credit: Nature



Classical and quantum generative models (1/2)

» Classical RL often assumes we have query access to an oracle
C that can, for any (s,a) € S x A of our choice, sample
s’ € S with probability p(s'|s, a).

» C is known as a (classical) generative model.

> If we have the circuit for C, then we can systematically and
efficiently construct a quantum oracle Q such that

Q:[s)a)[0)0) = |s) Z\/ s a)[') [srs0), (1)

where (s,a,s') € S x Ax S and {|1/Js/7s7a>}5/,5’a are some
quantum states.

» We call @ a quantum generative model.



Classical and quantum generative models (2/2)
Why Q :[s)|a) [0) [0) — [s) |a) 2oy /p(s'[s, a) Is') [thsr,s,0)?
» The circuit C must be a deterministic circuit taking two inputs
and producing one output:

SxA> (s,a) — — C(s,a,x) €S
{0,1}" 5 x — ¢ @)

such that Pry 0,13m(C(s, a,x) = s') = p(s'[s, a).
» We can quantize C as per usual to give a quantum circuit Q':

CS*4A 5 |s, a) — s, a)
@@ — Q@ — X (3)
(CS > ’03> — *|C(5’ avX))

» Appending one Hadamard gate to each of the m qubits in the
|x) register before running Q" and changing the input in the
second register to ket of the all-zeros bitstring gives O.



Quantum algorithms for RL



Summary of quantum speedups

Notation: S = |S|, A= |A|, T := (1 — )71, € :== max error;

q*, v*, m* = optimal (Q-value function, value function, policy).

Goal: . 1,2 i
output an Classical query complexity Quantum query complexity (our work)
€e-accurate
timate of
estimate o Upper and lower bound Upper bound Lower bound
. SAP3 SArts SArLS
q €2 € €
. % SAr3 . [SATLS  S\AT3 SVArtS
v, ™ 2 mln{ € 7 e } €

?Sidford et. al. (2018) and Azar et. al. (2013)



Quantum speedups from applying quantum mean
estimation and maximum finding to value iteration

> Quantum mean estimation (Montanaro, 2015) estimates E[X]
to error € using O(+/Var[X]/e) quantum queries to X.

» Quantum maximum finding (Diirr and Hgyer, 1996) finds the
maximum of a size-n list using O(y/n) quantum queries to it.

» They can speed up, e.g., the value iteration algorithm for v*:

v 0eRA
for (=1,2,...,L=0() do
for s € S do
| v(s) ¢ maxaeafr(s,a) +VE[v(s') | ' ~ p(-]s, a)]}
end
end

» But this value iteration turns out to be highly sub-optimal so
we speed up a modern variant (Sidford et. al., 2018) instead
which gives us the (near-)optimal bounds in the summary.



The total variance technique: a technical challenge

Consider n random variables Yi,..., Y, such that we know an
upper bound B on their total standard deviation. Suppose we have
(appropriate) query access to the Y;s and wish to estimate each of
their means such that the total error is < e.

1. Chebyshev’s inequality easily shows that O(B2/€?) queries
suffice for this task classically. Quantumly we would like to
have O(B/¢), a quadratic speedup.

2. Problem: quantum algorithms that try to emulate
Chebyshev's inequality (Montanaro, 2015; Hamoudi and
Magniez, 2018) require an upper bound on the variance of
each Y; to work and simply using B? for each leads to a
bound of O(nB/e) which is highly sub-optimal.

3. We solve this problem by showing that getting a total error of
€ + 1 can be achieved using O(B/€) quantum queries, where
n > 0 is some small additional error. We then show 7 can be
dealt with by other parts of our algorithm.



Quantum lower bounds proved by a reduction from the
computation of certain Boolean functions

» We have quantum query lower
bounds on computing Boolean
functions {PARITY, OR,
approximate counting}. By
quantum composition theorems
(Reichardt, 2011), we also have
quantum query lower bounds on
compositions of these functions.

. (s, A
» We reduce the computation of such { actons

compositions to the computation of
g*, v*, and 7* on certain hard RL
instances that we construct. This

implies our quantum lower bounds.




Open problems

Here are some open problems:

1. Can we circumvent our quantum lower bounds by asking for
particular entries of g*, v*, or ©*, or maybe these quantities
encoded in a quantum state?

2. Can we close the gap between the upper and lower bounds for
computing v* and 7*7

3. Our quantum algorithms quantize model-free classical
algorithms. Can we quantize model-based ones?

Thank you for your attention!
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