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Quantum algorithms for reinforcement Lattice-based quantum advantage
learning with a generative model from rotated measurements

Efficient guantum measurement of
Pauli operators in the presence of
finite sampling error

Parallel self-testing of EPR pairs
under computational assumptions

Possibilistic simulation of quantum A theory of quantum differential equation
circuits by classical circuits solvers: limitations and fast-forwarding

Quantum exploration algorithms
for multi-armed bandits

Quantum divide and conquer

Symmetries, graph properties, and
quantum speedups



Query complexity

Letf: £ C 2" — {0,1}, suppose an algorithm & computes f(x) correctly with
probability > 2/3 forallx € E

How many queries to (the oracle encoding) input x
does &/ need to make?

Classical query
[ > X;

Answer denoted D(f), R(f), and O(f), when & is Quantum query
deterministic, randomized, and quantum, respectively i) la) = li)la+x)

Quantum speedup < (/) < R(f)



Problem structure

Grover OR: {0,1}" — {0,1}

OR(X) =X1\/X2\/ \/xn

R(OR) = ©(n) and Q(OR) = O (y/n) P
ey component o
~~ Shor’s algorithm

Simon f¢,. .. EC {1,...,n}" = {0,1}, nis a power of 2

x € E < Xxisapermutationof [n] = {1,...,n} or x has a hidden period

R( Simon) — ®<\/E) and Q( Simon) = ®(10g n)

Observations

» Polynomial speedup
 Unstructured

» Exponential speedup
» Highly structured



Symmetries and graph properties

Letf: EC XM — {0,1} and G < S,,, we say fis symmetrical under G if
x€EE = x,--Xqn €EE and  f(x) =f(x0(1)...xa(M)) foralloc € G

Prior work: f symmetrical under G = §;, = R(f) < O(Q(f)3)

2 * 3
Observation. Suppose 2 = {0,1} and M = 7 = n(n — 1)/2, then
1. IM & set of adjacency matrices of (simple) graphs on n vertices .
2. f = graph property <= f symmetrical under G = {Permutations induced by §,} < S, " ranha 4
3 1
O 1 00 O 1 10 r €S, induces {u,v}m— {n(u),x(v)}
Graph A: 10 11 < 100111, Graph B: 1010 < 110101
10 1 0 1 | 111 0 1 1234\ (1234506
0110 0010 431 2 6 3524 1) 44 2

Graph B



Graph properties* — polynomial guantum speedup

Suppose f: E C {0,1 }”2 — {0,1} symmetrical under G = S,(lz) < §,. consisting of permutations of [1n°]
induced by §,: & €S, induces (u,v) € [n] X [n] (7] — (n(u), (V)

Chailloux’s lemma (adapted). Suppose it takes at least Q(r” C) quantum queries to distinguish a random
o € G from a random range-r function in Func([nz], [nz]), then R(f) = O(Q(f)°)

Observation. If we can distinguish a random ¢ € G from a random range-r~ function in Func([nz], [nz])

with ¢ quantum queries, then we can distinguish a random 7 € S, from a random range-r function in

Func([n], [n]) with g quantum queries Proof extends to /-uniform

hypergraph properties

!

Conclusion. The hypothesis of Chailloux’s lemma holds with ¢ = 6, so R(f) = O(Q(f)6)

Then = g =Q(r'®) = Q((rH")

*In the adjacency matrix model



Exponential quantum speedup in the adjacency list model

Adjacency list oracle: query by 1 € |n], oracle returns the labels of neighbours of vertex labelled 1

Glued-trees problem

S
AN AV;‘ I

Find label of EXIT given adjacency list oracle of a

glued trees graph and label of its ENTRANCE 'Not a graph property

ENTRANCE EXIT

Quantum: O(poly(k))

Randomized: 282®%)




Upgrade to a graph property

Problem. Decide if the graph

has maximum degree 5 or not ‘

POINTERSs

N
/’0"

AN

" --e MARKERs

' X

ENTRANCE EXIT

Quantum: O(poly(k))

1. Sample random label until hit POINTER

2. Classically walk to ENTRANCE ¢ >4 >
2k k k

3. Run quantum algorithm in
to find EXIT



Classical lower bound

Problem. Decide if the graph
has maximum degree 5 or not

POINTERSs MARKERSs

AN

AW
s

Randomized: 28

ENTRANCE EXIT
1. Can convert any randomized algorithm
for solving this problem into one that ¢ >4 > ¢ >
solves the glued-trees problem I I k

2. Result follows from



Further developments

« Complete characterization of the quantum speedup admitted by functions f: £ C 2" — {0,1}
symmetric under primitive permutation group G < §,

1. If G corresponds to [-uniform hypergraph symmetries, then Vf, R(f) < 0(Q(f)3l)
2. Otherwise, df with R(f) = Q(\/Z) and O(f) = O(logn)

— Near-complete characterization of how quantum speedup relate to symmetry under arbitrary G

* Exponential quantum speedup graph property testing in the adjacency list model

W\ .
where
e

Antenn
Antenna




Quantum algorithm design

* Fourier sampling

*Grover search/amplitude amplification

* Quantum walk

*Span programs
Paf Prod Applications

‘Adlabath Optlmlzathn/QAOA - Recognizing regu|ar |anguage$
- String rotation and string suffix
- Longest increasing subsequence | New!
- Longest common subsequence | New!

*Quantum signal processing/QSVT

*Quantum divide and conquer




Divide and conquer

1. Divide a problem into subproblems

2. Recursively solve each subproblem

3. Combine the solutions of the subproblems to solve the full problem

Merge sort
Cost of solving
Recurrence: auxiliary problem
v
Cn)=2Cn/2)+ 0n) = C(n) = Omlogn)
4

Cost of solving subproblem
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7
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Quantum divide and conquer

Every f: 2" — {0,1} can be associated with its adversary quantity, Adv(f) > 0

Theorem .O(f) = O(Adv()))

- AND-OR. Suppose fis computed as f,; [ ]/, []...[1f,[]f,uxs Whereeach [J]€ { A,V }

AdV(f)* < ) AdV(f)* + O(Q(fur)”)
=1

« SWITCH-CASE. Suppose fis computed by first computing s = .

ux(*X) and then some function g(x), then

Adv(f) < max Adv(g,) + O(Q(fuw))

— Divide and conquer recurrences in the quantum setting



Recognizing regular languages

Let T = {0,1,2},f.: =" — {0,1} such that f,(x) = 1 iff x € T#20%25*

02102112 @

02002110

Observation. Let gn(X) — (xleft & 2*20*> N\ (.xright = 0*22*), then

Jn(X) = Jun (xleft) V a2 (xright) V g, (x)

Let a(n) = Adv(f,), then a(n)* < 2a*(n/2) + O(Q(g,)*)

But Q(g,) = O(\/E) so a(n) = O(anogn)




Longest common subsequence

k-common subsequence (k-CS). Given x, y € 2", do x and y share a subsequence of length k?

I N k<44
e d k>4Q

*R(k-CS) = O(n) fork > 1

- QO(1-CS) = @(n2/3) < bipartite element distinctness

- O(k-CS) = O(nzk/(zk“)) < using

Can we do better?



Simple and composite k-CS

Theorem. Let a,(n) = adversary quantity for k-CS on input length . Then a,(n) = O(nZ/ 3 logk_1 n)

Divide the two input strings x and y into m parts each. Then, a k-CS can either be simple or composite
« A simple k-CS is a k-CS formed by symbols within a single part of x and a single part of y
« A composite k-CS is any k-CS that is not simple

@2%89@@66 @@@@@@Saa
OO OOREOEOEE

Simple k=2, m=23 Composite



Quantum divide and conquer on k-CS

Theorem. Let a,(n) = adversary quantity for k-CS on input length n. Then g, (n) = O(nZ/ 3 10gk_1 n)

Observations.

 Detecting composite k-CS takes O(nz/ 3 lc)gk_1 n) using inductive hypothesis and binary search

* Need to detect if there exists a simple k-CS between < 2m — 1 pairs of length-(7/m) substrings

1 I
| | [ine between parts =
[ I

parts share common symbol

m =73 <l
/ Cost of computing lines =

2 2/3
0]
|

Quantum divide and conquer — g, (n) < 0(n2/3 lc)gk_1 n) + m? - 0(n2/3) + \/2m — 1 a,(n/m)

Y4 Y5 Yo

which solves to a,(n) = O(n*?log"~' n), provided log,,(v/2m — 1) < 2/3 < m>7



New speedups from old

Search. Find a marked item from list of items <> given oracle access to x € {0,1}", find i such that x; = 1

O, 11)10) =1i)1x;)

Question. What if the items can be partially marked and the goal is to find the most heavily marked item?
<> given oracle access to p € [0,1]", find i such that p; is maximal \

0,|i)]0) = \i)(\ﬂ\l)q_\/l _pi‘()>) Multi-armed bandit

exploration problem

Theorem

Let H = ZZ= , (g, — qk)_z, where g, is the kth largest element of {p;}. (assume g; > g,), then the largest

p; can be identified using ®( V H) calls to Op "\ Upper bound: uses a variable-time algorithm

Lower bound: uses modified adversary method



Real-world applications?

Equivalently, can we instantiate the oracle in the real world? Yes!

Example. Finding the best move in chess

You have n candidate moves, where move i can lead to a set X(i) of possible subsequent games

« Assume you have computer code that, for move i and game g € X(i), computes f(i, g) = 1 if you win
and = 0 if you lose

- We can instantiate one call to O, using one call to f:

. . 1 . 1 . .
|)[0)]0) = [i)|0) lg) i) G, 2))g)=1i) A1) w)+4/1=p;i[0)]v;)
VX0 2 18 2 xop e (P vi=nl0)Iv)

gEX(D) gEX(D)

where | ui) and \vl-) are some junk states and p, equals the empirical probability that move 1 leads to

your win (our algorithm also works when Op involves junk states)



Conclusion

1. Structure: showed how symmetry relates to quantum speedups, in particular, graph symmetries
2. Design: described a framework for divide and conquer in the quantum setting

3. Application: to multi-armed bandits by generalizing Grover’s speedup for search

Open question: is there a useful problem with a massive quantum speedup?



Appendix: adversary quantity

Forany f: 2" — {0,1},

1]
Adv(f) = max ,
r maxep, |1

max over | X |" X | X" real symmetric matrices I" with f(x) = f(y) = TI',, = 0 and

(), = {F” T
Xy 0 ifx, =y,



