
CPSC 536W: Homework 2

Due on Canvas by 11:59pm on 1st March 2024

Rules.

1. Please try to solve the problems yourself first. If you get stuck, you may consult any resources (books, internet, peers,
office hours, etc.) for solutions. Provided you acknowledge these resources in detail, no marks will be deducted.

2. Please write legibly, work that is illegible will be marked as incorrect. Latex is strongly recommended for legibility. (I
also recommend using https://www.overleaf.com/ if you’re new to Latex.)

3. All answers should be justified.

4. The total number of points for non-bonus questions is T = 30. Credit policy for the bonus questions: suppose you
receive x points for the bonus questions and y points for the non-bonus questions, then the total number of points you
receive for this homework is min(x+ y, T ).

Homework

1. Consolidation of lecture material.

(a) Quantum circuits. The following exercise is intended to explain the pictorial representation of quantum circuits
by means of an example. Hopefully, the generalization of the example is obvious.

The quantum circuit on 3 qubits (i.e, the “a ∈ N” of the circuit is 3) defined by the sequence

(Toffoli, (2, 1, 3)), (H, 1), (T, 2), (H, 3), (Toffoli, (1, 2, 3)), (T, 1), (H, 3), (Toffoli, (3, 1, 2)), (1)

is pictorially representated as

H T

T

H H

(1 point) Explain why (Toffoli, (2, 1, 3)) and (Toffoli, (1, 2, 3)) have the same pictorial representation but that
their representations differ from that of (Toffoli, (3, 1, 2)). (Hint: look at the interpretation of the Toffoli gate
defined in lecture 5 notes.)

(1 point) Explain why in the column after the first Toffoli gate, the H, T , H gates are pictorially placed in the
same column even though in the sequence eq. (1) H comes first, T second, and another H third. (Hint: look at
the interpretation of the H and T gates defined in lecture 5 notes.)

(1 point) Suppose the sequence of gates in eq. (1) is applied to |000〉 (that is, we sequentially multiply the unitary
interpretations of these gates in order from left to right onto |000〉), what is the state at the end? Your answer
should be in the form

∑
x∈{0,1}3 αx |x〉, where αx ∈ C. (Hint: it’s easier if you use Dirac notation throughout.)

(The sequential product of the unitary interpretations of gates in a quantum circuit is known as the “unitary
implemented by that quantum circuit”.)

(b) Time complexity of Grover search in the context of kSAT. Recall that in kSAT, the relevent query problem
is to compute OR2l(x) where x : {0, 1}l → {0, 1} and l is the number of variables of the kSAT formula.

(1 point) Suppose l = 2 and x(u1, u2) = u1 ∧ u2. Construct a quantum circuit with gates in qGATES which
implements the quantum oracle of x (viewed as a 4 bit string), Ox ∈ C8×8. (Hint: this question is worth 1 point,
don’t overthink it! It may be useful to identify C8 with C2 ⊗ C2 ⊗ C2. If you’re interested in learning how Ox
can be constructed given an arbitrary classical circuit computing x : {0, 1}l → {0, 1}, I encourage you to watch:
Watrous’ lecture.)
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Recall that Grover’s algorithm not only employs Ox but also the following unitary

G := 12l −2|ψ〉〈ψ| ∈ C2l×2l , (2)

and |ψ〉 := 1√
2l

∑
u∈{0,1}l |u〉.

(2 points) In the case that l = 2, show how to simulate the effect of G in eq. (2) using a quantum circuit (with
gates in qGATES). That is, construct a quantum circuit on a+ 2 (for some a ∈ N) qubits implementing a unitary
U ∈ C2a ⊗ C4, and an x ∈ {0, 1}a, such that

U |x〉 |v〉 = |x〉G |v〉 , (3)

for all |v〉 ∈ C4. (Recall that |x〉 |v〉 means |x〉 ⊗ |v〉 and |x〉G |v〉 means |x〉 ⊗G |v〉.)
(Note that the |x〉 part of the state U acts on does not change and serves as a catalyst (aka ancilla) to the
simulation. Since the |x〉 part does not change, it can be reused later on for further simulations.)

(c) Instantiating quantum queries to tilde bits. Recall that the quantum algorithm for the collision problem first
classically queries x1, . . . , xk. Assuming these are distinct (else a collision is found), the algorithm then computes
the following

OR0,k
n−k(x̃k+1, . . . , x̃n), (4)

where for j ∈ {k + 1, . . . n},

x̃j :=

{
1 if xj ∈ {x1, . . . , xk}
0 if xj /∈ {x1, . . . , xk}

. (5)

This question is about how to instantiate the quantum oracle of x̃ := x̃k+1 . . . x̃n with two calls of the quantum
oracle Ox of x, when x1, . . . , xk are known.

Recall that x ∈ {0, 1, . . . , n− 1}n in the collision problem, so Ox ∈ Cn2×n2

is defined by

Ox |i〉 |j〉 = |i〉 |j + xi+1 mod n〉 , (6)

for all i, j ∈ {0, 1, . . . , n− 1}.
(1 point) Show how to instantiate O†x using one call of Ox, that is, show the existence of unitaries U1, U2 ∈ Cn2×n2

such that:
∀x ∈ {0, 1 . . . , n− 1}n, O†x = U1OxU2 (7)

(Hints: (i) do not think of the left and right hand sides in terms of matrices, but in terms of their actions on the
basis {|i〉 |j〉 | i, j ∈ {0, 1, . . . , n− 1}}, (ii) how does O†x act on this basis?)

Let F : {0, 1, . . . , n − 1} → {0, 1} be defined by F (s) = 1[s ∈ {x1, . . . , xk}]. Let UF ∈ C2n×2n be the unitary
corresponding to F as defined in the proof of Fact (*) in lecture 4 notes. Since we have classically queried
x1, . . . , xk, we can call UF an arbitrary number of times without using any further queries to Ox.

(1 point) Fill in the expressions for the two *s in the following manipulations, where i ∈ {k, . . . , n − 1} and
b ∈ {0, 1}:

Cn ⊗ Cn ⊗ C2 3 |i〉 |0〉 |b〉 Ox⊗127→ |i〉 |xi+1 mod n〉 |b〉
1n⊗UF7→ ∗
O†

x⊗127→ ∗

(8)

(You should observe that the effect of the above manipulations is the same as applying the quantum oracle of x̃
with the |0〉 state in the middle serving as the ancilla.)

(d) Lemma used in Simon’s algorithm.

(2 points) Prove the following:

Lemma 1. Let x ∈ {0, 1}k and |x〉 = |x1〉 . . . |xk〉 be a k-qubit state. Let H⊗k := H ⊗ · · · ⊗H (k times), where H
is the Hadamard gate. Then

H⊗k |x〉 =
1√
2k

∑
y∈{0,1}k

(−1)x·y |y〉 , (9)

where x · y :=
∑k
i=1 xiyi.
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2. SWAP test.

Let n ∈ N. Let |ψ〉 :=
∑
x∈{0,1}n αx |x〉 and |φ〉 :=

∑
x∈{0,1}n βx |x〉 be two n-qubit quantum states, where ∀x ∈

{0, 1}n, αx, βx ∈ C.

Let cSWAP denote the unitary matrix acting on C2 ⊗ C2n ⊗ C2n defined by

cSWAP |0〉 |x〉 |y〉 = |0〉 |x〉 |y〉 and cSWAP |1〉 |x〉 |y〉 = |1〉 |y〉 |x〉 , (10)

for all x, y ∈ {0, 1}n.

(2 points) Compute the following state

(H ⊗ 12n ⊗12n)(cSWAP)(H ⊗ 12n ⊗12n) |0〉 |ψ〉 |φ〉 , (11)

using Dirac notation throughout.

(2 points) Suppose we make the computational basis measurement on the first register, that is, we make the measure-
ment defined by

Π0 := |0〉〈0| ⊗ 12n ⊗12n and Π1 := |1〉〈1| ⊗ 12n ⊗12n . (12)

Show that the probability of measuring 0 is
1 + | 〈ψ|φ〉 |2

2
. (13)

(2 points) Suppose a stranger gives you k n-qubit states |ψ1〉 , . . . , |ψk〉 with the promise that either

(a) For all i ∈ [k],

|ψi〉 =
1√
2n

∑
x∈{0,1}n

|x〉 , (14)

or

(b) For all i ∈ [k],

|ψi〉 =
1√

2n−1

∑
x∈S
|x〉 , (15)

for some S ⊆ {0, 1}n of size |S| = 2n−1. (The stranger does not tell you what S is.)

The stranger also does not tell you which case you’re in. Nonetheless, show that for all k ≥ 20 there is a procedure
involving the SWAP test that, in either case, can help you correctly decide the case you’re in with probability ≥ 99/100.

Remark 1. The last part of the question is meant to illustrate that even quantum states with non-negative amplitudes
(i.e., the αxs are non-negative) behave very differently from probability distributions. In the probabilistic analogue of
this problem, the first case would correspond to k samples each chosen uniformly randomly from {0, 1}n, and the second
case would correspond to k samples each chosen uniformly randomly from some S ⊆ {0, 1}n of size |S| = 2n−1. If you
don’t know what S is, distinguishing between these cases with probability ≥ 99/100 would require k = Ω(2n).

3. Circuit size lower bounds on RAM and QRAM. (Or, why RAM and QRAM fall outside the Turing
model.)

For l ∈ N, let RAMl : {0, 1}l × {0, 1}2
l → {0, 1} be defined by RAMl(i, x) = xi. Let Cl be a classical circuit with l+ 2l

input bits and 1 output bit (as defined in lecture 5 notes) that computes RAMl.

(2 points) Show that the circuit size (i.e., the number of gates) of Cl must be Ω(2l).

For l ∈ N, let QRAMl ∈ C2l ⊗ C22
l

⊗ C2 be the unitary matrix defined by

QRAMl |i〉 |x〉 |b〉 = |i〉 |x〉 |b⊕ xi+1〉 , (16)

for all i ∈ {0, 1}l, x ∈ {0, 1}2l , b ∈ {0, 1}. Let Ql be a quantum circuit on l+ 2l+ 1 qubits (as defined in lecture 5 notes)
that implements the unitary QRAMl.

(2 points) Show that the circuit size (i.e., the number of gates) of Ql must be Ω(2l). (Hint: think about what you did
for the first part.)
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Remark 2. (Q)RAM stands for (Quantum) Random Access Memory. The RAM assumption is effectively that the
circuit of Cl can be described in a number of steps that is polynomial in l. The QRAM assumption is effectively that the
circuit of Ql can be described in a number of steps that is polynomial in l. As this question shows, these assumptions
fall outside the Turing model. These assumptions are motivated by specialized hardware, called RAM and QRAM, that
allow for extremely fast retrival of information. While the existence RAM is well-established, the existence of QRAM
is controversial — see, e.g., [Jaques and Rattew, 23].

In the collision problem, to implement the UF (as defined in 1(c)) time-efficiently requires us to make the QRAM
assumption. It is an interesting open question whether there exists a depth-d quantum query algorithm A that computes
Collisionn with bounded error 1/3 such that

(a) d = O(n1/3)

(b) for i = 0, 1, . . . , d, the unitary Ui defining A can be described as a quantum circuit in τi steps without making the

QRAM assumption and
∑d
i=0 τi ≤ O(n1/3).

A reference along this line is [Chailloux, Naya-Plasencia, Schrottenloher, 17].

The same open question about removing QRAM is outstanding for many other quantum algorithms, e.g., the one we
discussed for directed-STCON in hypercube. (To avoid possible confusion, note that the results we proved for query
complexity are independent of the RAM/QRAM assumption and are unaffected by this discussion.)

4. Directed-STCON in 1× n lattice. Let n ∈ N. Observe that each x ∈ {0, 1}3n+1 can be used to specify a subgraph
of the 1 × n lattice (see fig. 1) by indicating the presence or absence of its 3n + 1 edges. For example, x1 = 1 means
bottom left-most edge is present, x2 = 0 means the bottom second-left-most edge is absent, etc.

Define
L1,n : {0, 1}3n+1 → {0, 1} (17)

by L1,n(x) = 1 if and only if there is a directed path from the bottom-left vertex to the top-right vertex in the subgraph
of the 1× n lattice as specified by x, where the direction is from left-to-right and down-to-up.

n = 4

t

s

Figure 1: 1× (n = 4) lattice. s is the bottom-left vertex. t is the top-right vertex.

(4 points) Show that Q(L1,n) = O(
√
n).

You may assume that when using Grover search to compute ORk, the probability of error is zero.1

(Hint: Grover search allows you to compute ORk fast using O(
√
k) quantum queries, think about how computing

various ORks on different subsets of bits of the input x ∈ {0, 1}3n+1 can be used to compute L1,n(x).)

Remark 3. There is an obvious generalization of this problem to the k × n lattice. Call the associated function Lk,n.
It is known that Q(Ln,n) = O(n2) and, roughly speaking, Q(Ln,n) = Ω(n1.5). If you can improve the upper bound on
Q(Ln,n) to O(n2−ε) for some ε > 0, please let me know and I can help you prepare a paper for publication. Also see
one of the bonus questions.

5. Directed-STCON in hypercube. In class, we analyzed the directed-STCON in hypercube problem with one inter-
mediate layer between Hamming weight zero and Hamming weight n/2.

(6 points) Show how the analysis can be generalized to the case of two intermediate layers and derive an improved
quantum query complexity upper bound for the problem.

Your analysis should be at roughly the same level of detail as the lectured analysis. As in the previous question, you
may assume that when using Grover search to compute ORk, the probability of error is zero.

Write your answer in the form O∗(2cn) for some c > 0 written to 4 digits of accuracy. (Recall that O∗(·) means we
ignore all polynomial factors in n.)

(Hint: If you’re stuck, you may consult [Ambainis et. al., 18]. However, you need to analyze the two intermediate
layers case to receive any credit for this question.)

1In fact, the quantum query complexity of computing ORk with exactly zero error is Θ(k), but using error suppression/Chernoff bound, it costs
little to suppress the error to be tiny.
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6. Bonus questions.
(2 points) General circuit construction for G. Show how to simulate the effect of the unitary G as defined in
eq. (2) for arbitrary l ∈ N. That is, construct a quantum circuit on a+ l (for some a ∈ N) qubits with gates in qGATES

implementing a unitary U ∈ C2a ⊗ C2l , and an x ∈ {0, 1}a, such that

U |x〉 |v〉 = |x〉G |v〉 , (18)

for all |v〉 ∈ C2l .

(4 points) Circuit compilation. We use the symbol S to denote a quantum gate with unitary interpretation(
1 0
0 i

)
. (19)

Prove or disprove the following statement.

For all unitaries U ∈ C2×2 and for all ε > 0, there exists a quantum circuit on 1 qubit defined by a finite sequence of
H (Hadamard) and S gates such that the unitary V ∈ C2×2 implemented by the quantum circuit satisfies

‖V − U‖F ≤ ε, (20)

where ‖ · ‖F denotes the Frobenius norm, i.e.,∥∥∥(a b
c d

)∥∥∥
F

:=
√
|a|2 + |b|2 + |c|2 + |d|2. (21)

(To receive any credit for this problem, you must prove/disprove from first principles. You may not invoke well-known
theorems.)

Remark 4. In the jargon, this question is asking whether the gate set {H,S} is universal for single-qubit unitaries.

(4 points) Directed STCON in 2×n lattice. Define L2,n : {0, 1}5n+2 → {0, 1} in the obvious way for the function
associated with directed-STCON in the 2× n lattice. That is, L2,n(x) = 1 if and only if there is a directed path from
the bottom-left vertex to the top-right vertex in the subgraph of the 2× n lattice as specified by x, where the direction
is from left-to-right and down-to-up. (Note that there are 5n+ 2 edges in the 2× n lattice.)

Show that Q(L2,n) = O(
√
n · logp(n)), for some p ≥ 0.

Again, you may assume that when using Grover search to compute ORk, the probability of error is zero.

If you manage to do this question with p = 0, you will earn an additional 2 points (so 6 points).
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