
CPSC 536W: Homework 3

Due on Gradescope by 11:59pm on 12th April 2024

Rules.

1. Please try to solve the problems yourself first. If you get stuck, you may consult any resources (books, internet, peers,
office hours, etc.) for solutions. Provided you acknowledge these resources in detail, no marks will be deducted.

2. Please write legibly, work that is illegible will be marked as incorrect. Latex is strongly recommended for legibility. (I
also recommend using https://www.overleaf.com/ if you’re new to Latex.)

3. All answers should be justified.

4. The total number of points for non-bonus questions is T = 32. Credit policy for the bonus question: suppose you
receive x points for the bonus question and y points for the non-bonus questions, then the total number of points you
receive for this homework is min(x+ y, T ).

Homework

1. Consolidation of lecture material.

(a) Recall that for M ∈ N, the quantum Fourier transform on CM is the unitary QFTM ∈ CM×M defined by

QFTM |j〉 =
1√
M

M−1∑
k=0

ωjkM |k〉 , (1)

for all j ∈ {0, 1 . . . ,M − 1}, where wM := exp(2πi/M).

(1 point) Show that QFTM is unitary, using Dirac notation throughout. That is, show that

QFT†M QFTM = 1M = QFTM QFT†M .

(b) Recall the following lemma that we used in the proof of the query complexity of HSP:

Lemma 1. Let G be a finite group, H,H ′ ≤ G (subgroups of G), and g, g′ ∈ G. Then

|gH ∩ g′H ′| =

{
|H ∩H ′| if g−1g′ ∈ HH ′,
0 otherwise.

(2)

Here is a sketch proof of the lemma.

Sketch proof.

|gH ∩ g′H ′| =|{(h, h′) ∈ H ×H ′ : gh = g′h′}| (3)

=

{
|H ∩H ′| if g−1g′ ∈ HH ′,
0 otherwise.

(4)

This question is about filling in the details of this sketch proof.

(2 points) Justify eq. (3) in the proof by defining a map

φ1 : {(h, h′) ∈ H ×H ′ : gh = g′h′} → gH ∩ g′H ′

and showing that it is a bijection. (You first need to show that φ1 is well-defined.) (Hint: you need to use
properties of (sub)groups.)

(3 points) Justify eq. (4) in the proof. In the case g−1g′ ∈ HH ′, do this by defining a map

φ2 : {(h, h′) ∈ H ×H ′ : gh = g′h′} → H ∩H ′

and showing that it is a bijection. (You first need to show that φ2 is well-defined.) (Hint: this question is worth
an entire mark more than the previous question, so you may need to be more careful.)
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(c) Symmetry of the fidelity function.

Let d ∈ N. Let X ∈ Cd×d.
(1 point) Show that there exist two sets of orthonormal bases {|u1〉 , . . . , |ud〉} and {|v1〉 , . . . , |vd〉} of Cd such
that

X =

rank(X)∑
i=1

σi|ui〉〈vi|, (5)

where the σis are the non-zero singular values of X, using Dirac notation as much as possible. (Hint: You may
assume the singular value decomposition of X.)

(1 point) Show that tr[|X|] = tr[|X†|], where |X| :=
√
X†X.

(1 point) Given two d-dimensional density matrices ρ, σ ∈ Cd×d, recall their fidelity is defined to be

F (ρ, σ) := ‖√ρ
√
σ‖1, (6)

where ‖ · ‖1 is the Schatten 1-norm (aka the trace norm). Show that F (ρ, σ) = F (σ, ρ).

(d) Recall the statement of amplitude amplification.

Proposition 1 (Amplitude amplification). Let d ∈ N and θ ∈ [0, π/2]. Let |ψ0〉, |ψ1〉 be d-dimensional quantum
states. Let |ψ〉 be the 2d-dimensional quantum state defined by

|ψ〉 := cos(θ) |0〉 |ψ0〉+ sin(θ) |1〉 |ψ1〉 ∈ C2d, (7)

where |0〉 , |1〉 ∈ C2 denote the first and second computational basis states. Let

G := 12d−2|ψ〉〈ψ| and U := 12d−2|1〉〈1| ⊗ 1d . (8)

Then, for all k ∈ N,

(GU)k |ψ〉 = (−1)k(cos((2k + 1)θ) |0〉 |ψ0〉+ sin((2k + 1)θ) |1〉 |ψ1〉). (9)

The proof of this proposition is “essentially the same” as the steps leading to Eq. 47 in the posted lecture 3 notes
but it’s not exactly the same.

(4 points) Provide a complete and self-contained proof of the proposition.

(e) Let n ∈ N and M ⊆ [n]. Let P be a real symmetric stochastic n×n matrix. Let P ′ be the variant of P that stops
transitioning upon reaching M . That is, for all i, j ∈ [n],

(P ′)ij =

{
δij if j ∈M,

Pij if j /∈M.
(10)

Let U ∈ Cn2×n2

denote the Szegedy quantum walk operator corresponding to P ′. Let T :=
∑n
j=1 |ψj〉〈j| ∈ Cn2×n,

where

∀j ∈ [n], |ψj〉 := |j〉 ⊗
n∑
i=1

√
P ′ij |i〉 ∈ Cn

2

. (11)

Let

|ψ〉 :=
1√

n− |M |

∑
j∈[n],j /∈M

|j〉 ∈ Cn. (12)

We needed the following to analyze the behavior of phase estimation with unitary U and state T |ψ〉.
(2 points) In the case M = ∅, show that T |ψ〉 is an eigenvector of U with eigenvalue 1.

(2 points) In the case M 6= ∅, let PM denote the (n− |M |)× (n− |M |) submatrix of P corresponding to indices
not in M . Suppose ‖PM‖ < 1. Show that |ψ〉 lies in the span of vectors of the form |λ〉, where |λ〉 is an eigenvector
of the discriminant matrix of P ′ with eigenvalue not equal to 1. (Hint: recall the discriminant matrix D ∈ Rn×n

of P ′ is defined entrywise by Dij =
√
P ′ijP

′
ji.)

(Therefore T |ψ〉 lies in the span of vectors of the form T |λ〉, where |λ〉 is an eigenvector of the discriminant matrix
of P ′ with eigenvalue not equal to 1.)
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2. Hidden parabola problem. Source: CMSC 858Q, A1, P5; instructor: Andrew Childs.

Let p ≥ 3 be a prime and S be a finite set with size |S| ≥ p2.

Suppose xα,β : F2
p → S satisfies the promise that

xα,β(u, v) = xα,β(u′, v′) ⇐⇒ αu2 + βu− v = αu′2 + βu′ − v′ (13)

for some unknown 0 6= α ∈ Fp and β ∈ Fp. In other words, xα,β is constant on the parabola

Pα,β,γ := {(u, v) ∈ F2
p : v = αu2 + βu+ γ} (14)

for any fixed γ ∈ Fp, and distinct on parabolas corresponding to different values of γ. The hidden parabola problem is
about using (quantum) queries to xα,β to determine the values of α and β.

In this exercise, we’ll walk through the following description of a quantum query algorithm that can identify the hidden
parabola with constant probability using a constant number of queries to xα,β .

(a) Use one quantum query to xα,β , i.e., one use of the quantum oracle of xα,β , to create the state:

1

p

∑
u,v∈Fp

|u, v〉 |xα,β(u, v)〉 . (15)

(b) Measure the last register in the computational basis to obtain some x0 ∈ S. The state of the first two1 registers
becomes

1
√
p

∑
u,v∈Fp|v=αu2+βu+γ0

|u, v〉 =
1
√
p

∑
u∈Fp

|u, αu2 + βu+ γ0〉 (16)

for some γ0 ∈ Fp.
(c) Apply QFTp (as defined in the first question) on the second register gives

1

p

∑
u∈Fp

|u〉
∑
v∈Fp

ωv·(αu
2+βu+γ0) |v〉 ,

where ω := exp(2πi/p).

(d) Measure the second register in the computational basis to obtain v0 ∈ Fp.
(1 point) For each i ∈ Fp, what is the probability that v0 = i?

The state of the first register then becomes

ωv0γ0
√
p

∑
u∈Fp

ωv0·(αu
2+βu) |u〉 , (17)

which can be equated to
1
√
p

∑
u∈Fp

ωv0·(αu
2+βu) |u〉 , (18)

since the “global phase factor” ωv0γ0 will not impact any future measurement statistics (this follows from the
measurement postulates).

(e) Do all of the above steps another time to obtain the state

1
√
p

∑
u∈Fp

ωv0·(αu
2+βu) |u〉 ⊗ 1

√
p

∑
u′∈Fp

ωv
′
0·(αu

′2+βu′) |u′〉

=
1

p

∑
u,u′∈Fp

ωv0·(αu
2+βu)+v′0·(αu

′2+βu′) |u, u′〉

=
1

p

∑
u,u′∈Fp

ωα(v0u
2+v′0u

′2)+β(v0u+v
′
0u

′) |u, u′〉

for some v′0 ∈ Fp obtained like v0.

1|∗, †〉 is shorthand for |∗〉 ⊗ |†〉 = |∗〉 |†〉 and so can be viewed as having two registers.
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(1 point) Explain how we can then create the state (without using any additional queries):

1

p

∑
u,u′∈Fp

ωα(v0u
2+v′0u

′2)+β(v0u+v
′
0u

′) |u, u′〉 |v0u2 + v′0u
′2〉 |v0u+ v′0u

′〉 (19)

=
1

p

∑
z2,z1∈Fp

ωαz2+βz1
∑

u,u′∈Fp|
v0u

2+v′0u
′2=z2

v0u+v
′
0u

′=z1

|u, u′〉 |z2〉 |z1〉 . (20)

(f) (2 points) For all 4-tuples (z2, z1, v0, v
′
0) ∈ F4

p such that 0 /∈ {v0, v′0, v0 + v′0}, solve the following system of
equations in the variables (u, u′): {

v0u
2 + v′0u

′2 =z2,

v0u+ v′0u
′ =z1.

(21)

(g) (1 point) Assuming 0 /∈ {v0, v′0, v0 + v′0}, explain how to erase the values of the first two registers to zero in the
state eq. (20). That is, explain how we can get from eq. (20) to a state of the form

1

p

∑
z2,z1∈Fp

ωαz2+βz1cz2,z1 |0, 0〉 |z2〉 |z1〉 , (22)

where cz2,z1 ∈ C. (Hint: use the previous part.)

(h) (4 points) Finally, apply QFT−1p ⊗QFT−1p to the last two registers of eq. (22) and then perform the computational
basis measurement on those two registers. Show that the probability of the measurement outcome being (α, β) ∈ F2

p

is at least a constant. (Note that we are no longer assuming 0 /∈ {v0, v′0, v0 + v′0}.) (Hint: note that p ≥ 3.)

3. Spectrum of a product of reflections. Source: CMSC 858Q, A2, P4; instructor: Andrew Childs.

Let d ∈ N. A reflection on Cd is a matrix of the form 2P − 1d, where P is the projection onto a subspace of Cd. In
this language, the Szegedy quantum walk operator is a product of two particular reflections. In lectures, we analyzed
the spectrum of the Szegedy quantum walk operator.

In this exercise, we will analyze the spectrum of a product of two arbitrary reflections.

Consider two subspaces
A := span{|ψ1〉 , . . . , |ψa〉} and B := span{|φ1〉 , . . . , |φb〉} (23)

of Cd, where 〈ψj |ψk〉 = δjk and 〈φj |φk〉 = δjk. Let

Π :=

a∑
j=1

|ψj〉〈ψj | and Σ :=

b∑
j=1

|φj〉〈φj | (24)

denote the projections onto A and B respectively. Let R := 2Π − 1d and S := 2Σ − 1d denote the corresponding
reflections. Let U := R · S. Finally, let D denote the a× b matrix with entries Djk = 〈ψj |φk〉. We proceed to analyze
the spectrum of U in terms of the singular value decomposition of D.

(a) (2 points) Let |α〉 and |β〉 denote left and right singular vectors of D, respectively, with the same singular
value σ. The left singular vector |α〉 ∈ Ca can be mapped to a vector A |α〉 ∈ Cd by applying the isometry
A :=

∑a
j=1 |ψj〉〈j|. Similarly, the right singular vector |β〉 ∈ Cb can be mapped to a vector B |β〉 ∈ Cd by the

isometry B :=
∑b
j=1 |φj〉〈j|. Show that the subspace span{A |α〉 , B |β〉} is invariant under the action of U .

(b) (2 points) Diagonalize the action of U within this subspace to obtain one or two linearly independent eigenvectors
of U . When do you obtain one, and when do you obtain two? Compute the eigenvalues of U corresponding to
these eigenvectors.

(c) (2 points) How many eigenvectors of U are obtained by the procedure outlined above? What are the remaining
eigenvectors of U and their corresponding eigenvalues?

4. Bonus question.

Let n, t ∈ N be such that t ≤ n. For σ : [t]→ [t] a bjiection, define χσ ∈ Cnt×nt

by

χσ :=
∑

i1,...,it∈[n]

|i1, i2, . . . , it〉〈iσ(1), iσ(2), . . . , iσ(t)|. (25)

4

https://www.cs.umd.edu/class/spring2017/cmsc858Q/a2.pdf


Then, define

χ :=
∑
σ∈St

χσ, (26)

where St denotes the set of all bijections from [t] to [t].

Observe that χ is a Hermitian matrix.

(3 points) Completely characterize the spectrum of χ. That is, determine all the eigenvalues of χ together with the
dimensions of their corresponding eigenspaces.

(Hint: it may help to consider the case t = 2 first, in which case χσ may be familiar from lectures.)

Now, define

ρ :=
(n− 1)!

(n+ t− 1)!
χ. (27)

For x ∈ {0, 1}n, define

|φx〉 :=
1√
n

n∑
i=1

(−1)xi |i〉 (28)

and

σ :=
1

2n

∑
x∈{0,1}n

(|φx〉〈φx|)⊗t ∈ Cn
t×nt

. (29)

(5 points) Show that

‖σ − ρ‖1 ≤ 100 · t
2

n
, (30)

for all n, t ∈ N with t ≤ n, where the norm on the l.h.s is the Schatten 1-norm (aka the trace norm).

(Hints:

(a) you may take for granted the fact that ‖A‖1 of a Hermitian matrix A is the sum of the absolute values of the
eigenvalues of A,

(b) it may help to consider the action of σ on the eigenspaces of ρ (which are the same as those of χ since ρ and χ
differ by a scalar factor),

(c) in particular, it may help to consider the action of σ (and ρ) on states of the form

1√
t!

∑
σ∈St

|iσ(1), · · · , iσ(t)〉 ∈ Cn
t

, (31)

where i1, . . . , it ∈ [n] and |{i1, . . . , it}| = t, i.e., the ijs are all distinct,

(d) the factor of 100 on the r.h.s. of eq. (30) is not too significant; a better constant is possible, but we don’t
particularly care about optimizing the constant for this question so I’m giving you some leeway with 100.

)
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