
CPSC 536W: Homework 4

Due on Gradescope by 11:59pm on 26th April 2024

Rules.

1. Please try to solve the problems yourself first. If you get stuck, you may consult any resources (books, internet, peers,
office hours, etc.) for solutions. Provided you acknowledge these resources in detail, no marks will be deducted.

2. Please write legibly, work that is illegible will be marked as incorrect. Latex is strongly recommended for legibility. (I
also recommend using https://www.overleaf.com/ if you’re new to Latex.)

3. All answers should be justified.

4. The total number of points for non-bonus questions is T = 16. Credit policy for the bonus question: suppose you
receive x points for the bonus question and y points for the non-bonus questions, then the total number of points you
receive for this homework is min(x+ y, T ).

Homework

1. Consolidation of lecture material.

(a) Block encoding of a Hamiltonian described as a Pauli decomposition.

Suppose H is an n-qubit Hamiltonian of the form

H =

N∑
j=1

ajPj , (1)

where the Pjs are n-qubit Pauli matrices and aj > 0 are such that
∑

j aj = 1. Suppose Prepare ∈ CN×N is a

unitary matrix such that Prepare |0〉 =
∑N

j=1

√
aj |j〉 and Select ∈ CN2n×N2n is the matrix defined by

Select :=

N∑
j=1

|j〉〈j| ⊗ Pj . (2)

(1 point) Show that Select is a unitary matrix.

(1 point) Show that (Prepare−1⊗12n) · Select ·(Prepare⊗12n) is a block encoding of H.

(b) Existence of block encoding. Let H ∈ Cn×n be Hermitian.

(4 points) Show that

there exists N ≥ n and a unitary U ∈ CN×N such that the top-left n× n block of U equals H (3)

if and only if
‖H‖ ≤ 1, where ‖ · ‖ denotes the spectral norm (4)

(Hint: you need to show this for arbitrary n ∈ N but it helps to think about the case n = 1 first.)

2. Combinatorial formulation of the adversary method. Source: CMSC 858Q, A3, P3; instructor: Andrew Childs.

Let f : {0, 1}n → {0, 1}. The original formulation of the adversary method in [Ambainis’00] is as follows. Let X,Y ⊆
{0, 1}n be such that f(x) 6= f(y) for all x ∈ X, y ∈ Y . For any relation R ⊆ X × Y , define

m := min
x∈X
|{y ∈ Y : (x, y) ∈ R}| l := max

x∈X
i∈{1,...,n}

|{y ∈ Y : (x, y) ∈ R and xi 6= yi}| (5)

m′ := min
y∈Y
|{x ∈ X : (x, y) ∈ R}| l′ := max

y∈Y
i∈{1,...,n}

|{x ∈ X : (x, y) ∈ R and xi 6= yi}| (6)
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https://www.overleaf.com/
https://www.cs.umd.edu/class/spring2017/cmsc858Q/a3.pdf
https://arxiv.org/abs/quant-ph/0002066


Then define Amb(f) := maxX,Y,R

√
mm′

ll′ , where the max is over all X,Y,R such that ll′ 6= 0.

(6 points) Show that Adv(f) ≥ Amb(f). (You may find a copy of the definition of Adv(f) in Question 4(a).)

(Hint: you may use the following result: any A ∈ Ra×b satisfies

‖A‖ ≤
√
r(A) · c(A), (7)

where the norm is the spectral norm and

r(A) := max
i∈[a]

b∑
j=1

|Aij | and c(A) := max
j∈[b]

a∑
i=1

|Aij |.) (8)

3. Adversary lower bound for Majority.

For n ∈ N, define
MAJORITYn : {0, 1}n → {0, 1} (9)

by MAJORITYn(x) = 1 if and only if x contains strictly more 1s than 0s.

(4 points) Show that Adv(MAJORITYn) ≥ Ω(n).

(Hint: you may use the last question.)

4. Bonus questions.

(a) Upper bound on the adversary quantity.

Let f : {0, 1}n → {0, 1}. The adversary quantity of f , Adv(f), is defined1 by

maximize ‖Γ‖
subject to Γ ∈ R2n×2n is symmetric

f(x) = f(y) =⇒ Γxy = 0 for all x, y ∈ {0, 1}n

∀i ∈ [n], ‖Γi‖ ≤ 1,

where Γi ∈ R2n×2n is defined entrywise by (Γi)xy = 1[xi 6= yi]Γxy for all x, y ∈ {0, 1}n.

(10)

(4 points) Show that Adv(f) ≤ n. (Recall that the norms in eq. (10) are spectral norms.)

(b) Semidefinite programming formulation of the adversary quantity. (You do not need to know the definition
of a semidefinite program to do this question.)

Let f : {0, 1}n → {0, 1}. Consider the formulation of the adversary quantity in eq. (10). We’ll first introduce some
notation that allows us to rewrite it in a form that makes solving this problem slightly easier.

Notation. Let J ∈ R2n×2n be the all-ones matrix. Let F ∈ R2n×2n be defined entrywise by Fxy = 1[f(x) = f(y)]
for all x, y ∈ {0, 1}n. For i ∈ [n], let ∆i ∈ R2n×2n be defined entrywise by (∆i)xy = 1[xi 6= yi] for all x, y ∈ {0, 1}n.
For two matrices A and B of the same size, we write A ◦B for the component-wise multiplication of A and B (aka
Hadamard product).

(1 point) Show that the objective value of eq. (10) is the same as that of eq. (11).

maximize ‖Γ‖
subject to Γ ∈ R2n×2n is symmetric

Γ ◦ F = 0

∀i ∈ [n], ‖Γ ◦∆i‖ ≤ 1.

(11)

(3 points) Show that the objective value of eq. (11) is at least that of

maximize 〈J,W 〉
subject to β ∈ R2n ,W ∈ R2n×2n is symmetric

W ◦ F = 0

∀i ∈ [n],diag(β)−W ◦∆i ≥ 0 and diag(β) +W ◦∆i ≥ 0

diag(β) ≥ 0,
∑

x∈{0,1}n
βx ≤ 1,

(12)

1The following definition is not exactly the same as that given in lectures but it should be clear that they are equivalent.
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where 〈J,W 〉 := tr[J†W ] = tr[JW ] = sum of all entries of W , diag(β) denotes the 2n×2n diagonal matrix defined
by diag(β)xx = βx for all x ∈ {0, 1}n, and the notation A ≥ 0 for a square matrix A means that A is positive
semidefinite.

(Hint: for a given β,W , consider defining

Γ :=
∑

x,y∈{0,1}n|Wxy 6=0

Wxy√
βxβy

|x〉〈y|, (13)

explaining why Wxy 6= 0 =⇒ βxβy 6= 0 so that this definition makes sense.)

(3 points) Show that the objective value of eq. (11) is at most that of

maximize 〈J,W 〉
subject to β ∈ R2n ,W ∈ C2n×2n is Hermitian

W ◦ F = 0

∀i ∈ [n],diag(β)−W ◦∆i ≥ 0 and diag(β) +W ◦∆i ≥ 0

diag(β) ≥ 0,
∑

x∈{0,1}n
βx ≤ 1.

(14)

(Hint: for a given Γ, explain why we can assume ‖Γ‖ = γ†Γγ for some unit vector γ ∈ C2n without loss of
generality, then consider defining

W := diag(γ)† · Γ · diag(γ) and βx = |γx|2 for all x ∈ {0, 1}n.) (15)

(1 point) Show that the objective values of eq. (12) and eq. (14) are the same.

Remark 1. This question shows that the adversary quantity of f can be formulated as a semidefinite program
since eq. (14) is a semidefinite program and the above showed Adv(f) equals the objective value of eq. (14). One
useful consequence of this result is that we can efficiently compute Adv(f) for any f with small domain size using
software packages for semidefinite programming like CVX; the computational complexity scales polynomially with
the domain size (exponentially with n). If you’re unfamiliar with semidefinite programming but want to understand
why eq. (14) is a semidefinite program, I recommend Watrous notes.
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https://cvxr.com/cvx/doc/sdp.html
https://johnwatrous.com/wp-content/uploads/TQI-notes.07.pdf

