
Lecture notes

January 8, 2024

1 Lecture 1

Logistics. There will be 4 homework assignments. All homework will be announced during lectures and released on the
course website: https://wdaochen.com/teaching.html. The first homework will be shorter and released on Friday 12th
January. It will be due by the drop deadline of 22nd January. All assessment will be via homework.

O�ce hours: Fridays 2:00pm - 3:00pm, ICICS X553.
TA: Xingyu Zhou (away this week, will be grading homework).

Brief introduction. Quantum computing is computation using the laws of quantum mechanics that were discovered in
the early 20th century. Sometimes the power of quantum computing is described as: n quantum bits or qubits can be in
the 2n states of n bits at the same time. Therefore, it can solve a problem by simply trying 2n, i.e., a large number for n
large, possible solutions at the same time. But this is explanation is not really correct. In fact, employing the same logic,
we may also say that n classical bits can be in 2n states at the same time in a classical randomized computation where the
n bits are determined by n random coin flips. In fact, quantum computation is similar to randomized computation in many
ways. However, we will see that it subsumes randomized computation and can be provably more powerful than randomized
computation in the so-called “query model” of computation. Much of this course will focus on the query model, which is not
the same as the standard model of computation, known as the Turing model. We do this for two reasons:

1. Quantum-over-classical speedups (or simply quantum speedups) can be proven rigorously in the query model. In
contrast, there is no rigorous proof of quantum speedup in the Turing model. This is because it is notoriously di�cult
to prove classical lower bounds in the Turing model.

2. Quantum speedups in the query model often translates into “apparent speedups” in the Turing model, where “apparent
speedups” means quantum algorithms that’s faster than any known classical algorithm. For example, the apparent
quantum speedup for factoring discovered by Peter Shor was motivated by a quantum speedup in the query model for
the so-called Simon’s problem.

Let’s get started! An alphabet is a finite non-empty set. N denotes the positive integers (no zero).
Query complexity: Let n,m 2 N, ⌃ := {0, 1, . . . ,m� 1}, � be an alphabet, and

f : D ✓ ⌃n ! �, (1)

Mainly deal with case where � = {0, 1}.

Remark 1. (Remarks are informal.)

1. Main question of query complexity: given x 2 D, how many bits of x need to be read (queried) to compute f? (At most
n.)

2. Three models of query computation: deterministic D(f), randomized R(f), quantum Q(f). Quantum speedup means
Q(f) < R(f). Note that this means to establish a quantum speedup, we not only need to give a quantum algorithm but
a classical lower bound. Therefore, a portion of this class will be devoted to classical analysis.

3. Comment: Say this only if someone asks. I think the point is easier to appreciate once the students have become more
familiar with the query model. The access to the input x 2 D is di↵erent in the Turing model. In the Turing model,
x would be the classical input to a (quantum) circuit and time complexity is the time needed to generate that circuit.
The x 2 {0, 1}n in the query model more appropriately translates to a function x : [n] ! {0, 1} whose circuit can be
contructed using the input y in the Turing model. Hopefully this makes more sense when we discuss how the query
speedup for OR translates to an apparent speedup for 3SAT. (Note that in the Turing machine model, the output of the
Turing machine on 1� is the (quantum) circuit that computes the answer to the problem on all input y 2 {0, 1}�.)

Example 1. 1. f : {0, 1}3 ! {0, 1}, f(x) = (x1 ^ x2) _ (¬x1 ^ x3). Intuitively, how many bits of the input x 2 {0, 1} do
we need to read to determine f . Could always read all 3 bits but here there’s a cleverer way. Read the bit x1, then read
x2 if x1 = 1 and x3 if x1 = 0.

1

https://wdaochen.com/teaching.html

2. f = ORn : {0, 1}n ! {0, 1}
ORn(x) = x1 _ x2 _ · · · _ xn. (2)

Computing ORn models search among n elements since computing ORn(x) is equivalent to finding a 1 among the n
bits of x. Facts:

(a) D(ORn) = R(ORn) = ⇥(n) 1 Intuition: for a “worst-case” input x, you might query the first n� 1 bits and they
all show up as 0 so still need to made one more query to devide whether OR(x) = 0 or OR(x) = 1.

(b) Q(ORn) = ⇥(
p
n) – due to Grover search, will see later.

(Note that computing OR2n relates to solving SAT on n Boolean variables since latter is about seach for a satisfying
assignment among 2n possible assignments.)

The definitions of query complexity are dependent on the domain of the f under consideration, i.e., they are dependent
on D, m, and n (left implicit).

Definition 1 (Deterministic decision tree (or query algorithm)). Comment: draw figure A deterministic decision tree is a
m-ary tree T with a unique vertex labelled as “root”, together with the following additional data:

1. Each leaf2 of T is labelled by an element in �.

2. Each non-leaf vertex of T is labelled by an element in [n] := {1, 2, . . . , n}.

3. For all non-leaf vertices v, the m edges between v and its m children are each labelled by a unique element in {0, 1, . . . ,m�
1}. (For each non-leaf vertex of T , its neighbors going away from the root are known as its children. Each non-leaf
vertex of T has exactly m children.)

Definition 2 (Deterministic query computation). Let T be a deterministic decision tree and x 2 D. We write T (x) 2 {0, 1}
for the bit output by the following procedure

Set vcurrent to be the root vertex. Then, repeat the following until the label of a leaf is output:

1. If vcurrent is a leaf then output its label.

2. Otherwise, let i 2 [n] be the label of vcurrent and let v be the child of vcurrent such that the edge {vcurrent, v} is
labelled by xi. Set vcurrent = v.

We say that a deterministic decision tree T computes f if

8x 2 D, T (x) = f(x). (3)

[The “for all” quantifier means this is sometimes referred to as “T computes f in the worst case”.]

Definition 3 (Deterministic query complexity). Given a deterministic decision tree (DDT) T , its depth depth(T) is the
maximum length of a root-to-leaf path in T . Then

D(f) := min
T DDT, T computes f

depth(T) (4)

Definition 4 (Randomized decision tree (or query algorithm)). A randomized decision tree is a probability distribution T
over deterministic decision tree.

Definition 5 (Randomized query computation). Given x 2 D and a randomized decision tree T , we write T (x) for the
random variable on {0, 1} defined by: for all i 2 �,

Pr[T (x) = i] := Pr[T (x) = i | T T]. (5)

Let ✏ 2 (0, 1/2). We say that a randomized decision tree T computes f with (two-sided) bounded-error ✏ if

8x 2 D, Pr[T (x) = f(x)] � 1� ✏ (6)

Note that
Pr[T (x) = f(x)] = Pr[T (x) = f(x) | T T] =

X

T

Pr[T | T T] · [T (x) = f(x)] (7)

1Asymptotic notation: f(n) = ⇥(n) means there exists constants 0 < c1 < c2 and n0 2 N such that for all n 2 N s.t. n > n0: c1n  f(n)  c2n.
2A leaf of T is a vertex of degree 1.

2

Definition 6 (Randomized query complexity). Given a randomized decision tree (RDT) T , its depth is defined by

depth(T) := max{depth(T) | Pr[T | T T] > 0}. (8)

Then for ✏ 2 (0, 1/2),

R✏(f) := min{depth(T) | T RDT, T computes f with bounded-error ✏}. (9)

Also standard to write
R(f) := R1/3(f). (10)

3

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5

