
Lecture 10

Period finding in Z. Also known as the Hidden Subgroup Problem (HSP) over Z.
Comment: I decided to teach Shor’s algorithm following the exposition in Section 3.3 of Jozsa’s lecture notes which

explains Shor’s original approach. This is so that the similarity of the analysis of the query problem underlying Shor’s
algorithm, PeriodN below, to the analysis of Simon’s problem is self-evident. Indeed, Shor was directly inspired by Simon’s
algorithm when he came up with his algorithm: see this video. The exposition here differs from that of, e.g., Nielsen and
Chuang, which explains Kitaev’s variant of Shor’s algorithm.

We study the following query problem.

PeriodN : D ⊂ (ZN)Z → {1, . . . , N}, (103)

where x ∈ D if and only if there exists r ∈ N such that

x(s) = x(t) ⇐⇒ s− t ∈ rZ := {rz | z ∈ Z}. (104)

Comment: In the language of the HSP, the ambiant group of this problem is Z and the hidden subgroup is rZ.
Observe that for a given x ∈ D, the “r” associated with it is unique and we denote it by per(x) (called “period of

x”). (Proof: suppose both r, r′ ∈ N are associated with x, then x(0) = x(r) = x(r′) =⇒ r − r′ ∈ rZ ∩ r′Z =⇒
r|(r − r′) and r′|(r − r′) =⇒ r|r′, r′|r =⇒ r = ±r′ =⇒ r = r′ as r, r′ ∈ N.)

This does not technically fall into the query problem setup since the input x can be queried at an infinite number of
points in Z but the algorithm we describe will only query x at points in {0, . . . , 2n − 1} for n := d2 log2(N)e+ 1.

The quantum algorithm uses the Quantum Fourier Transform.

Definition 19 (Quantum Fourier Transform). For M ∈ N, the quantum Fourier transform on CM is the unitary QFTM ∈
CM×M defined by

QFTM |j〉 =

M−1∑
k=0

ωjkM |k〉 , (105)

for all j ∈ {0, 1 . . . ,M − 1}, where wM := exp(2πi/M). Comment: exercise: check that it is unitary.

Lemma 7 (Coprimality lemma). Let r ∈ N such that r ≥ 100. The number of elements in {0, 1, . . . , r− 1} that are coprime
to r (i.e., ∀d ∈ N, d|j, d|r =⇒ d = 1), denoted φ(r) (Euler’s totient function), satisfies

φ(r) ≥ r

5 ln ln(r)
, (106)

where ln is the natural logarithm.

Remark 12. There’s a more refined estimate: for r ∈ N, r ≥ 3, we have

φ(r) ≥ r

eγ ln ln(r) + 3
ln ln(r)

, (107)

where eγ ∈ [1.7810, 1.7812].

Proposition 11. Q(PeriodN) = O(log log(N)).

Proof. Given input x ∈ D, let r := per(x). Assume wlog N ≥ 100 as the claimed result is asymptotic. Assume wlog r ≥ 100,
else r will be found by classically querying x(0), . . . , x(99). Observe that we must have r ≤ N .

Let n := d2 log2(N)e+ 1 so that 2n > N2 and write

2n − 1 = Br + b, (108)

in quotient remainder form, so that B ∈ {0, 1, . . . } and 0 ≤ b < r.
Comment: a lot of the technical complications of this proof can be avoided if we assume r|2n, as explained in Lecture 11.
Create the state

1√
2n

2n−1∑
s=0

|s〉 |x(s)〉 . (109)

Measure the second register. Then the state of the first register becomes

1√
A+ 1

A∑
k=0

|s0 + kr〉 , (110)

26

https://dec41.user.srcf.net/notes/III_M/quantum_computation.pdf
https://www.arxiv.org/abs/quant-ph/9508027
https://www.youtube.com/watch?v=6qD9XElTpCE
https://www.amazon.ca/Quantum-Computation-Information-10th-Anniversary/dp/1107002176
https://www.amazon.ca/Quantum-Computation-Information-10th-Anniversary/dp/1107002176

for some s0 ∈ {0, 1, . . . , r − 1}, where A = B if s0 ≤ b and A = B − 1 if s0 > b. Comment: draw picture.
Now we apply QFT2n to Eq. (110) to obtain

1√
2n(A+ 1)

2n−1∑
y=0

A∑
k=0

ω(s0+kr)y |y〉 =
1√

2n(A+ 1)

2n−1∑
y=0

ωs0y
(A∑
k=0

ωkry
)
|y〉 , (111)

where ω := ω2n .
We analyze the sum in brackets:

1 + ωry + · · ·+ ωAry. (112)

For j ∈ {0, 1, . . . , r − 1}, let yj ∈ {0, 1, . . . , 2n − 1} be the closest integer to j2n/r (if there’s a tie, let yj be the smaller),
so that ∣∣∣yj − j 2n

r

∣∣∣ ≤ 1

2
. (113)

Note that the yjs defined this way must be distinct since 2n/r > N2/N = N ≥ 100. Comment: if r|2n, then yj would just
exactly equal j2n/r.

Then, we have ∣∣∣ryj
2n
− j
∣∣∣ ≤ 1

2

r

2n
. (114)

and so we can write
ryj
2n

= j + ηj , (115)

where |ηj | ≤ r/2n+1 < N/(2N2) = 1/(2N). Then

Sj :=

A∑
k=0

ωkryj =

A∑
k=0

exp(2πi · kryj/2n) =

A∑
k=0

exp(2πi · kηj). (116)

Two cases:

1. ηj = 0. Then Sj = A+ 1.

2. ηj 6= 0. Then

|Sj |2 =
∣∣∣1− exp(2πi · (A+ 1)ηj)

1− exp(2πi · ηj)

∣∣∣2 sum geometric series

=
∣∣∣exp(−πi · (A+ 1)ηj)− exp(πi · (A+ 1)ηj)

exp(−πi · ηj)− exp(πi · ηj)

∣∣∣2
=

sin2(π(A+ 1)ηj)

sin2(πηj)

≥ sin2(π(A+ 1)ηj)

π2η2
j

∀θ ∈ R, sin(θ)2 ≤ θ2

Now,
|π(A+ 1)ηj | = π(A+ 1)|ηj | ≤ π(B + 1)r/2n+1 ≤ π/2 + πr/2n+1 < π/2 + π/(2N) ≤ 0.505π, (117)

where the last inequality uses N ≥ 100. But sin2(θ) ≥ θ2/3 for all θ ∈ [−0.505π, 0.505π] Comment: for safety, I’ve used
a rather loose bound here, so

|Sj |2 ≥
(A+ 1)2

3
. (118)

Therefore, if we measure the state in Eq. (111) in the computational basis, the probability of the measurement outcome

27

being yj for some j ∈ {0, 1, . . . , r − 1} that is coprime to r is at least:

r

5 ln ln(r)
· 1

2n(A+ 1)
· (A+ 1)2

3

=
1

ln ln(r)

r(A+ 1)

15 · 2n

≥ 1

ln ln(r)

rB

15 · 2n

=
1

ln ln(r)

2n − 1− b
15 · 2n

≥ 1

ln ln(r)

2n − r
15 · 2n

≥ 1

ln ln(r)

1

15

(
1− 1

N

)
r/2n ≤ N/2n < N/N2 = 1/N

≥ 1

ln ln(r)
0.05 N ≥ 100

Comment: it took many lines above to nail down the details but the point is just that at the second line we have r(A+1) ≈ 2n.
The overall algorithm is described as follows:

Set r∗ = N + 1.
Repeat the following 10000 ln ln(N) times.

Run the procedure described above and let z be the outcome of the measurement. Compute some r′ ∈ N, r′ ≤ N
and j′ ∈ {0, 1, . . . , r′ − 1} coprime to r′ such that∣∣∣ z

2n
− j′

r′

∣∣∣ ≤ 1

2

1

2n
. (119)

There are two cases:

(a) If no such pairs r′, j′ exist, then skip to the next repeat.

(b) If r′, j′ exist, verify if x(0) = x(r′) using 2 queries. If r′ ≤ r∗, set r∗ = r′.

After all repeats are finished, output r∗.

Comment: (i) x(0) = x(r′) does not imply r′ = per(x) as r′ could be a multiple of the period; (ii) the computation can be
done by trying all possible pairs r′, j′ – we don’t care about the cost of this for query complexity. However, this takes Ω(N)
steps and is emphatically not what we would do if we want a O(poly(log(N))) time quantum algorithm, see later lectures.

We now argue that with very high probability, this procedure will yield the period r. We consider the following two cases
at each repeat. Let z denote the measurement outcome.

1. z is indeed yj for some j coprime to r. Then ∣∣∣ rz
2n
− j
∣∣∣ ≤ 1

2

r

2n
(120)

and so ∣∣∣ z
2n
− j

r

∣∣∣ ≤ 1

2

1

2n
. (121)

So certainly r′, j′ exist. But r′ ∈ N, r′ ≤ N and j′ ∈ {0, 1, . . . , r′ − 1} is coprime to r′ satisfies∣∣∣ z
2n
− j′

r′

∣∣∣ ≤ 1

2

1

2n
. (122)

Then we must have j/r = j′/r′ , since

jr′ 6= j′r =⇒
∣∣∣ j
r
− j′

r′

∣∣∣ =
∣∣∣jr′ − j′r

rr′

∣∣∣ ≥ 1

N2
, (123)

but ∣∣∣ j
r
− j′

r′

∣∣∣ ≤ 1

2n
<

1

N2
, (124)

which is a contradiction. Comment: we’ve not used co-primeness before this, only r, r′ ≤ N : the above analysis shows
that for any a ∈ R there can be at most one fraction with denominator less than or equal to N that approximates a
to precision < 1/N2; this fact is what motivated the choice of n to be d2 log2(N)e + 1 But j is coprime to r and j′ is
coprime to r′ so j/r = j′/r′ =⇒ j = j′ and r = r′. Therefore, r′ = r and r∗ is set to r.

28

2. z is not yj for some j coprime to r. Assume wlog that r′, j′ still exist and satisfies x(0) = x(r′) (else, nothing happens
in this repeat). Then r′ − 0 ∈ rZ so r|r′ so r′ ≥ r and so r∗ is set to an integer that is at least r.

The above analysis means if the first case occurs in at least one of the 10000 ln ln(N) repeats, then the output of the
algorithm will be correct.

At each repeat, the probability that the first case occurs is at least

0.05
1

ln ln(r)
≥ 0.05

1

ln ln(N)
. (125)

Therefore, the probability of the first case not occuring across all repeats (this is the probability of failure) is at most(
1− 0.05

1

ln ln(N)

)10000 ln ln(N)

≤ e−500 ≤ 1/3, (126)

as required.

Comment: we didn’t cover the following in Lecture 10 but you may find it interesting, especially if you’re worried about
using Lemma 7 without knowing its proof.

We can prove a “poor man’s version” of the coprimality lemma (Lemma 7). Reference: Appendix 4, Problem 4.1 of Nielsen
and Chuang. Since we can prove this lemma from first principles, it means that we can prove Q(PeriodN) = O(logN) from
first principles (which would also lead to a poly(log(N)) time quantum algorithm for factoring N ∈ N).

Lemma 8. For r ∈ N, let π(r) denote the number of elements in {1, . . . , r} that are prime. Then

π(2r) ≥ r

log2(2r)
. (127)

In particular, φ(2r) ≥ r/ log2(2r).

Proof. First observe that (
2r

r

)
=

(2r)

r

(2r − 1)

r − 1
. . .

r + 1

1
≥ 2r. (128)

Second, observe that for any m ∈ N and prime p ∈ N, the number of times that p appears in m! is⌊m
p

⌋
+ · · ·+

⌊m
pk

⌋
, (129)

where k is such that pk ≤ m < pk+1. Comment: proof by example, m = 5, p = 2.

Therefore, the number of times a prime p appears in
(

2r
r

)
= (2r)!

(r!)2 is given by⌊2r

p

⌋
+ · · ·+

⌊ 2r

pkp

⌋
− 2
(⌊r
p

⌋
+ · · ·+

⌊ r

pkp

⌋)
≤ kp, (130)

where kp is such that pkp ≤ 2r < pkp+1 and we used the inequality ∀x > 0, b2xc − 2bxc ≤ 1.
Clearly, only primes p with 1 ≤ p ≤ 2r can appear in the factorization of

(
2r
r

)
. Therefore

2r ≤
(

2r

r

)
≤

∏
p prime ,1≤p≤2r

pkp ≤ (2r)π(2r). (131)

Taking base-2 logarithms and rearranging yields the lemma.

29

https://www.amazon.ca/Quantum-Computation-Information-10th-Anniversary/dp/1107002176
https://www.amazon.ca/Quantum-Computation-Information-10th-Anniversary/dp/1107002176

