
Lecture 3

Definition 9 (Quantum query algorithm). A quantum query algorithm of depth d is specified by the following data:

1. w ∈ N. (Dimension of the workspace, i.e., non-query, part of the algorithm.)

2. d+ 1 unitary matrices U0, U1, . . . , Ud ∈ Cn ⊗ Cm ⊗ Cw = Cnmw.

3. A Γ-outcome projective measurement M := {Πs | s ∈ Γ} on Cnmw.

Definition 10 (Quantum oracle). For x ∈ {0, . . . ,m − 1}n, the quantum oracle of x is the unitary matrix Ox ∈ Cnm×nm
defined by

Ox |i〉 |j〉 = |i〉 |j + xi+1 mod m〉 , (24)

for all i ∈ {0, 1, . . . , n−1} and j ∈ {0, . . . ,m−1}. (And linearly extended. mod m maps integers to the range {0, . . . ,m−1})
In the special case where m = 2, this is the same as

Ox |i〉 |b〉 = |i〉 |b⊕ xi+1〉 , (25)

for all i ∈ {0, 1, . . . , n− 1} and b ∈ {0, 1}, where ⊕ denotes XOR and |b〉 represents a 1-qubit quantum state.

Definition 11 (Quantum query computation). Given x ∈ D and a quantum query algorithm A, we write A(x) for the
random variable on {0, 1} defined by, for all i ∈ Γ

Pr[A(x) = i] := ‖Πi · Ud(Ox ⊗ 1w) . . . U1(Ox ⊗ 1w)U0 |0〉 ‖2, (26)

where 1w ∈ Cw×w is the identity matrix and we recall |0〉 ∈ Cnmw is the first computational basis vector. (Note there are d
occurrences of Ox on the RHS.)

Comment: Draw the circuit note that the tensored identity is not drawn.
Let ε ∈ (0, 1/2). We say that a quantum query algorithm A computes f with (two-sided) bounded-error ε if

∀x ∈ D, Pr[A(x) = f(x)] ≥ 1− ε, (27)

where the probability is over the random variable A(x).

Definition 12 (Quantum query complexity). For ε ∈ (0, 1/2), Qε(f) is defined to be the minimum depth of any quantum
query algorithm that computes f with (two-sided) bounded-error ε. Also standard to write Q(f) = Q1/3(f).

Grover’s algorithm. Recall
ORn : {0, 1}n → {0, 1}. (28)

It will be convenient to work with an alternative form of the quantum oracle.

Definition 13 (Quantum phase oracle). For x ∈ {0, 1}n the quantum phase oracle of x is the unitary matrix Ux ∈ C2n×2n

defined by
Ux |i〉 |b〉 = (−1)xi+1·b |i〉 |b〉 . (29)

Let

H :=
1√
2

(
1 1
1 −1

)
(30)

denote the Hadamard matrix.
(Quantum query complexity does not change regardless of whether we use the phase oracle or the normal oracle.)

Lemma 1 (Phase kickback trick). For all x ∈ {0, 1}n, Ux = (1n⊗H)Ox(1n⊗H). Moreover, since H2 = 12, we also have
Ox = (1n⊗H)Ux(1n⊗H).

Note that the quantum phase oracle of x can be implemented using one call to the quantum oracle of x together with
unitaries independent of x, and vice versa. Therefore, if we defined quantum query complexity using the quantum phase
oracle instead of the quantum oracle, the value of quantum query complexity would not change.

Proof. Note that for b ∈ {0, 1}, we have

H |b〉 =
1√
2

(|0〉+ (−1)b |1〉). (31)
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Then

|i〉 |b〉 1n⊗H7→ |i〉 1√
2

(|0〉+ (−1)b |1〉) Ox7→ 1√
2
|i〉 (|xi+1〉+ (−1)b |xi+1 ⊕ 1〉)

1n⊗H7→ 1√
2
|i〉 ( 1√

2
(|0〉+ (−1)xi+1 |1〉) + (−1)b

1√
2

(|0〉+ (−1)xi+1⊕1 |1〉))

=
1

2
|i〉 ((1 + (−1)b) |0〉+ (−1)xi+1 |1〉) + (−1)xi+1(1− (−1)b) |1〉)

=(−1)xi+1·b |i〉 |b〉 ,

as required.

Remark 3. There is a generalization of the quantum phase oracle definition for m > 2 (x ∈ {0, 1, . . . ,m − 1}n) — see
Andrew Childs’ lecture notes, Section 20.2.

For t ∈ N, define OR0,t
n to be ORn with the restricted domain D0,t := {x ∈ {0, 1}n | |x| ∈ {0, t}}.

Proposition 3 (Grover’s algorithm). For all n, t ∈ N with t ≤ n/3,

Q(OR0,t
n ) ≤ π

4

√
n

t
+

1

2
. (32)

Proof. Let |ψ〉 denote the n-dimensional quantum state

|ψ〉 :=
1√
n

n−1∑
i=0

|i〉 , (33)

and let G ∈ Cn×n denote the following unitary matrix

G := 1n−2|ψ〉〈ψ|. (34)

For x ∈ {0, 1}n, let

Vx :=

n−1∑
i=0

(−1)xi+1 |i〉〈i| = 1n−2
∑

i|xi+1=1

|i〉〈i|. (35)

(Vx can be instantiated using the quantum phase oracle with b set to 1, and still uses 1 call to Ox.)
Let

Π0 := |ψ〉〈ψ| and Π1 := 1n−Π0. (36)

Clearly, {Π0,Π1} defines a {0, 1}-outcome measurement on Cn.
For k ∈ N, we now consider the following quantity, which can be seen as the probability that a k-query quantum algorithm

outputs 0:
px := ‖Π0(GVx)k |ψ〉 ‖2. (37)

Two cases:

1. x = 0n. In this case Vx = 1n and Gk |ψ〉 = (−1)k |ψ〉 so px = 1.

2. |x| = t. Define the following orthogonal quantum states:

|ψ0〉 :=
1√
n− t

∑
i|xi+1=0

|i〉 , (38)

|ψ1〉 :=
1√
t

∑
i|xi+1=1

|i〉 . (39)

Then

|ψ〉 =

√
1− t

n
|ψ0〉+

√
t

n
|ψ1〉 = cos(θ) |ψ0〉+ sin(θ) |ψ1〉 , (40)

where θ := arcsin(
√
t/n) ∈ (0, π/2].
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We have

GVx |ψ0〉 = G |ψ0〉 = |ψ0〉 − 2 cos(θ) |ψ〉 = (1− 2 cos2(θ)) |ψ0〉 − 2 cos(θ) sin(θ) |ψ1〉 = − cos(2θ) |ψ0〉 − sin(2θ) |ψ1〉 .
(41)

GVx |ψ1〉 = −G |ψ1〉 = − |ψ1〉+ 2 sin(θ) |ψ〉 = 2 sin(θ) cos(θ) |ψ0〉+ (2 sin2(θ)− 1) |ψ1〉 = sin(2θ) |ψ0〉 − cos(2θ) |ψ1〉 .
(42)

Therefore, GVx applied to the state |ψ〉 always stays in the 2-dimensional subspace span(|ψ0〉 , |ψ1〉) ≤ Cn. Therefore,
we can reduce the analysis to linear algebra in C2 by working in the basis |ψ0〉 , |ψ1〉. In this basis, |ψ〉 is represented as(

cos(θ)
sin(θ)

)
, (43)

and −GVx is represented as

A :=

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
. (44)

This is rotation matrix by angle 2θ anticlockwise. Therefore

Ak =

(
cos(2kθ) − sin(2kθ)
sin(2kθ) cos(2kθ)

)
. (45)

(This is geometric intuitive, but can also prove this rigorously by diagonalizing A and then taking the kth power, as in
the first homework.)

Therefore,

Ak
(

cos(θ)
sin(θ)

)
=

(
cos(2kθ) cos(θ)− sin(2kθ) sin(θ)
sin(2kθ) cos(θ) + cos(2kθ) sin(θ)

)
=

(
cos((2k + 1)θ)
sin((2k + 1)θ)

)
. (46)

Therefore,
(GVx)k |ψ〉 = (−1)k(cos((2k + 1)θ) |ψ0〉+ sin((2k + 1)θ) |ψ1〉). (47)

Therefore,

px =[cos(θ) cos((2k + 1)θ) + sin(θ) sin((2k + 1)θ)]2 = cos2(2kθ).

Let r := π
4θ and k := bre ∈ [r − 1/2, r + 1/2] (where b·e denotes rounding to the nearest integer). Then

px = cos2(2kθ) ≤ cos2(2(r − 1/2)θ) (to see the ≤, draw cos2(A) around A = π/2) (48)

= cos2(π/2− θ) = sin2(θ) =
t

n
≤ 1/3. (last ≤ by proposition conditions) (49)

Therefore,

Q(OR0,t
n ) ≤ k := b π

4θ
e ≤ π

4θ
+

1

2
=

π

4 arcsin(
√
t/n)

+
1

2
≤ π

4

√
n

t
+

1

2
, (50)

where the last inequality uses arcsin(a) ≥ a for all a ∈ [0, 1].
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