
Lecture 4

We have now seen that R(OR0,1
n ) ≥ n/3 but Q(OR0,1

n ) ≤ π
4

√
n+ 1

2 , which completes our first rigorous proof of a (quadratic)
quantum speedup in terms of n within the query model.

In this lecture, we’ll see two very useful principles of quantum algorithm design given as the two items in fact 1 below.
We will apply these two principles to show how the quantum query complexity of ORn (without any restriction on domain)
is also O(

√
n). In later lectures, we will take these principles for granted and not explicitly mention them.

Fact 1. 1. Quantum (query) algorithms can efficiently simulate randomized (query) algorithms. In particular Q(f) ≤
R(f) for any f . Reference: Section 2.3.3 of de Wolf’s PhD thesis.

Proof sketch. We will see how a quantum query algorithm can simulate a DDT first by way of an example: consider
the obvious depth-2 DDT T that computes (¬x1 ∧ x2) ∨ (x1 ∧ ¬x3) with 1 labelling the root.

We will use the following

Fact (*). Suppose g : {0, 1 . . . , a− 1} → {0, 1, . . . , b− 1}, then there exists a unitary Ug (in fact permutation matrix)
acting on the space Ca ⊗ Cb = Cab (Ug ∈ Cab×ab) such that

Ug |i〉 |0〉 = |i〉 |g(i)〉 (51)

for all i ∈ {0, 1, . . . , a− 1}.
(Proof: let Ug :=

∑
i∈{0,1,...,a−1},j∈{0,1,...,b−1} |i, g(i) + j mod b〉〈i, j|, check it is unitary; in fact, it’s a permutation

matrix.)

Let I : {0, 1} → {2, 3} be defined by I(0) = 2 and I(1) = 3. (I maps the bit value of x1 to the index that is queried
next.) Let I − 1 denote the function that first applies I and then subtracts 1. Let h : {0, 1}× {0, 1, 2}× {0, 1} → {0, 1}
be defined by

h(0, 2− 1, 0) = 0, h(0, 2− 1, 1) = 1, h(1, 3− 1, 0) = 1, h(1, 3− 1, 1) = 0. (52)

We have defined h such that h(a, I − 1, b) is defined to be the value that T outputs if x1 = a, I is the index of the
variable queried next, and xI = b.

Register dimensions C3 ⊗ C2 ⊗ C3 ⊗ C2 ⊗ C2:

|0〉 |0〉︸ ︷︷ ︸
query registers

|0〉 |0〉 |0〉︸ ︷︷ ︸
workspace registers

Ox7→ |0〉 |x1〉 |0〉 |0〉 |0〉
UI−17→ |0〉 |x1〉 |I(x1)− 1〉 |0〉 |0〉 notation follows fact (*)

Ox7→ |0〉 |x1〉 |I(x1)− 1〉 |xI(x1)〉 |0〉
Uh7→ |0〉 |x1〉 |I(x1)− 1〉 |xI(x1)〉 |h(x1, I(x1)− 1, xI(x1))〉 notation follows fact (*)

= |0〉 |x1〉 |I(x1)− 1〉 |xI(x1)〉 |h(x1, I(x1)− 1, xI(x1))〉 |T (x)〉

where the
A7→ notation means application of matrix A (suitably tensored with identity matrices), and the last line uses

the definition of h. Then measuring using {Π0 := 136⊗|0〉〈0|,Π1 := 136⊗|1〉〈1|} gives outcome T (x) (with probability
1).

What about RDTs? Recall an RDT is a distribution (pi, Ti)
K−1
i=0 over DDTs. We have seen how Ti can be simulated

by a quantum query algorithm Ai for each i. Suppose Ai is specified by unitaries {U ij}j=0,...,d. Then the RDT can be
simulated by a quantum query algorithm A that starts with the state

|ψ0〉 :=

K−1∑
i=0

U i0 |0〉 ⊗
√
pi |i〉 . (53)

(More precisely, we can define the U0 of A to be any unitary such that U0 |0〉 = |ψ0〉.) Then for j ∈ {1, . . . , d}, Uj of A
is defined to be

Uj :=

K−1∑
i=0

U ij ⊗ |i〉〈i|. (54)

The measurement of A is still {Π0 := |0〉〈0|,Π1 := |0〉〈0|} (tensored with identities so that the Πbs only act non-trivially
on the single register that contains {Ti(x) | i ∈ {0, . . . ,K − 1}}.

10

https://homepages.cwi.nl/~rdewolf/publ/qc/phd.pdf


2. Principle of deferred measurement.

In our definition of quantum query complexity, there is one measurement coming at the end. But in fact, could have
also allowed “intermediate measurements”. The principle of deferred measurement says that such measurements can
always be simulated by a measurement at the end.

Proof of principle of deferred measurement. Suppose we make a measurementM := {Π1, . . . ,Πk} on a state |ψ〉 and if
the measurement outcome is i ∈ [k], we apply unitary Ui to another state |ψ′〉. Comment: In Simon’s problem (later),
need |ψ′〉 to be the postmeasurement state of |ψ〉—but the proof is the same. Then the effect of this procedure is that
with probability ‖Πi |ψ〉 ‖2, we end up with final state Ui |ψ′〉.
Now consider the following simulation: we apply the unitary

U :=

n∑
i=1

Πi ⊗ Ui (55)

to the state |ψ〉 |ψ′〉 and then measure the first register usingM. (Note U is unitary: UU† =
∑n
i=1 Πi⊗Ui ·

∑n
j=1 Πj ⊗

U†j =
∑n
i=1 Πi ⊗ I = I; Likewise U†U = I.)

Then the probability of observing outcome i ∈ [k] is

‖(Πi ⊗ 1)U |ψ〉 |ψ′〉 ‖2 = ‖Πi |ψ〉 ⊗ Ui |ψ′〉 ‖2 = ‖Πi |ψ〉 ‖2, (56)

where the last equality uses the fact that ‖u ⊗ v‖ = ‖u‖‖v‖ and ‖V u‖ = ‖V ‖ for unitary V . And the state on the
second register becomes Ui |ψ′〉. This is precisely the same effect as the original procedure where the measurement
comes first.

Using these facts (implicitly), can show the following.

Proposition 4. There exists c > 0 such that for all n ∈ N, we have

Q(ORn) ≤ c
√
n. (57)

Proof sketch. First, we may assume that |x| ≤ 0.01n. Else, if we randomly query 10000 indices of x, we’ll not find a 1 (i.e.,
fail to distinguish the input from 0n) with probability at most(

1− 0.01n

n

)10000

≤ e−100 = negligible3 (58)

where the inequality uses 1− x ≤ e−x for all x ≥ 0.
From the analysis before, we see that, on input x ∈ {0, 1}n using k queries we can get the probability of outputting 0 to

be

px(k) = cos2(2θxk) =
1 + cos(4θxk)

2
, (59)

where θx = arcsin(
√
|x|/n). Plot the graph of px(k) as a function of k; note that its period Tx satisfies

15 ≤ π

2 arcsin
√

0.01
≤ Tx :=

π

2θx
≤ π

2

√
n, (60)

where the second inequality uses the fact that |x| ≤ 0.01n and the last inequality uses |x| ≥ 1 (together with the monotonicity
of arcsin(a) for a ∈ [0, 1] and arcsin(a) ≥ a for a ∈ [0, 1]).

Observation: within the interval [1, dπ2
√
ne], px(k) runs over at least one period (by the second inequality of eq. (60)) and

each period must span over at least 15 positive integers (by the first inequality of eq. (60)).
The last step of the algorithm is:

Repeat the following 10000 times: choose k ∈ N uniformly at random from [1, dπ2
√
ne], run Grover’s quantum query

algorithm which has pk(x) probability of outputting 0 (i.e., the measurement outcome being 0). If the output is 1, return
1.

If all repeats give output 0, return 0.

3Note that this is “negligible” since we only care about computing ORn with bounded error 1/3 and compared to 1/3, e−100 is negligible. To
argue this formally, we need to consider the probabilities of failure from all sources (there’s another source later on), add them together (cf. the
“union bound” or “Boole’s inequality” on Wikipedia) and show that the sum is ≤ 1/3.
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Clearly the quantum query algorithm uses O(
√
n) queries. The intuition for correctness is that if we choose an integer

k uniformly at random from [1, dπ2
√
ne], the previous “Observation” means that px(k) will be constant away from 1 with

constant probability (over the randomness of the choice of k) – think pictorially!
This means that the quantum query algorithm will output 1 with constant probability. (Recall px(k) is the probability

of the quantum algorithm outputting 0.) Since we would never see 1 when x = 0n, we can just repeat this a large number
of times and output 1 if and only if the quantum query algorithm outputs a 1 in any of those repeats. This allows us to
suppress the error probability to be negligible.4

Remark 4. 1. To see that the query algorithm described in the proof is a bonafide quantum query algorithm according to
our definition, we need to use both facts that we established earlier, i.e., quantum can simulate randomized and principle
of deferred measurement. The first fact allows us to convert the randomized query algorithm doing the preprocessing to
a quantum query algorithm. But this quantum query algorithm could continue running if its output is not 1, and recall
a quantum query algorithm’s output always arises from a measurement. However, by the second fact, we can defer this
measurement to the end. The second fact also allows us to defer the measurements made in each of the repeat loops to
the end.

2. The exposition here expands a little on Scott Aaronson’s lecture notes on Grover search (top of page 8).

3. A somewhat different algorithm, along the lines of what Nick suggested in class of exponentially increasing k from 1 to
O(
√
n), is analyzed in detail in Section 4 of this paper.

4. In fact, there’s yet another algorithm for computing ORn using a “fully quantum strategy” (i.e., very unlike the two
algorithms mentioned above that are essentially Grover + classical ideas) called “fixed-point amplitude amplification”.
See this paper. Maybe we’ll have time to discuss this when we talk about quantum signal processing.

Proposition 5 (Error suppression/Chernoff bound). Let ε ∈ (0, 1/3). Let f : D ⊆ {0, 1, . . . ,m − 1}n → Γ. Then Rε(f) ≤
R(f)d18 ln(1/ε)e and Qε(f) ≤ Q(f)d18 ln(1/ε)e.

Proof. Will prove the randomized case. Same idea also works in the quantum case via the principle of deferred measurement.
Suppose T is an RDT that computes f with bounded error 1/3. Take k ∈ N copies of T and output the modal output of

the k copies. For a given x ∈ D, let X denote the number of copies that output the correct answer on x, the probability that
each copy outputs the correct answer is p = 1

2 + δ, where δ ≥ 1/6 and the probability that each copy outputs the incorrect
answer is q = 1− p = 1

2 − δ ≤ 1/3. Correct ⇐⇒ X > k/2. So probability of incorrect is

Pr[X ≤ k/2] =

k/2∑
i=0

Pr[X = i] =

k/2∑
i=0

(
k

i

)
piqk−i

≤
k/2∑
i=0

(
k

i

)
pk/2qk/2 ≤ 2k(pq)k/2

=2k
(1

2
+ δ
)k/2(1

2
− δ
)k/2

= 2k
(1

4
− δ2

)k/2
=(1− 4δ2)k/2 ≤ e−2kδ2 ∀x ≥ 0, 1− x ≤ e−x.

So if we pick k ≥ ln(1/ε)/(2δ2), we have Pr[X ≤ k/2] ≤ ε. Since δ ≥ 1/6, it suffices to pick k ≥ 18 ln(1/ε). Hence the
proposition.

Remark 5. We have shown that given k i.i.d. random variables X1, . . . , Xk taking values in {0, 1} such that ∃δ ∈ [0, 1/2],

∀i,Pr[Xi = 1] = 1
2 + δ. Then Pr[

∑k
i=1Xi ≤ k/2] ≤ e−2kδ2 . This type of bound is known as a Chernoff bound, there are

more sophisticated variants with more sophisticated proofs. The rough-and-ready proof given here is taken from Nielsen and
Chuang, Box 3.4.

4The proof of this is similar to how we got the first “negligible” and the footnote about the first “negligible” also applies here.
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