
Lecture 9

Proposition 10. R(Simonn) = Ω(
√
n).

We will need the following lemma.

Lemma 6. Let f, T : D := D0∪̇D1 ⊆ Σn → {0, 1}. Let f(D0) = {0} and f(D1) = {1}. Suppose µ0 is a distribution on D0

and µ1 is a distribution on D1. Let µ denote the distribution on D such that x ← µ is defined by b ← {0, 1} and x ← µb.
Let P1 ⊆ D1. Suppose that for all b ∈ {0, 1},

Pr[T (x) = b | x← µ0] = Pr[T (x) = b | x ∈ P1, x← µ1]. (94)

Then

Pr[T (x) = f(x) | x← µ] ≤ 1

2
+

1

2
Pr[x /∈ P1 | x← µ1]. (95)

Proof.

Pr[T (x) = f(x) | x← µ]

=
1

2
Pr[T (x) = 0 | x← µ0] +

1

2
Pr[T (x) = 1 | x← µ1] definition of µ

=
1

2
Pr[T (x) = 0 | x← µ0] +

1

2
(Pr[T (x) = 1 | x ∈ P1, x← µ1] Pr[x ∈ P1 | x← µ1]

+
1

2
Pr[T (x) = 1 | x /∈ P1, x← µ1] Pr[x /∈ P1 | x← µ1]) law of total probability

≤1

2
Pr[T (x) = 0 | x← µ0] +

1

2
Pr[T (x) = 1 | x← µ0] +

1

2
Pr[x /∈ P1 | x← µ1] by lemma condition

=
1

2
+

1

2
Pr[x /∈ P1 | x← µ1],

as required.

Comment: Apply this lemma to f = Simonn and T the (function induced by the) decision tree.

Proof of proposition 10. (A more rigorous version of de Wolf’s exposition.) By the averaging argument/easy direction of
Yao’s principle (i.e., the arguments we used at the beginning of the randomized lower bound proof for ORn), it suffices to
show the following. There exists a distribution µ over D such that if a DDT T satisfies

Pr[T (x) = Simonn(x) | x← µ] ≥ 2/3, (96)

then the depth d of T is at least Ω(
√
n).

We assume without loss of generality (wlog) that

1. T never queries x at the same index twice, i.e., in all paths from root to leaf, the labels of the nodes are distinct.

2. T is balanced, i.e., every root-to-leaf path is length d.

This is wlog since any T without these properties can be simulated by another DDT with these two properties of no greater
depth.

To define µ, we first define two distributions µ0 and µ1 on D0 and D1 respectively by the following sampling procedures.
Then we define x← µ by b← {0, 1} and x← µb.

1. Definition of x← µ0. For each s ∈ {0, 1}k, pick a distinct value in {0, 1, . . . , n− 1} for x(s) uniformly at random. (So
x is a uniformly random permutation of {0, 1, . . . , n− 1}.)

2. Definition of x ← µ1. Pick a ← {0, 1}k − {0k}, then for each set {s, s⊕ a}, where s ∈ {0, 1}k, pick a distinct value in
{0, 1, . . . , n − 1} for x(s) = x(s ⊕ a) uniformly at random. Comment: the distribution defined is independent of how
the “for each” loop is ordered.

Case x← µ0. The sequence of d responses to the d queries T makes is a uniformly random sequence of d distinct elements
in {0, 1, . . . , n− 1}.

Case x ← µ1. Let t ∈ {1, . . . , d}. Let v1, . . . , vt−1 ∈ {0, 1, . . . , n − 1} be distinct. Let s1, . . . st denote the sequence of
indices that T queries on x given x(s1) = v1, . . . , x(st−1) = vt−1. (Note s1, . . . , st are uniquely defined, in particular, s1 is the

24

https://homepages.cwi.nl/~rdewolf/simonlowerbound.pdf


label of the root of T .) Say the sequence x(s1), . . . , x(st) is good if all its values are all distinct. Writing Pr for probability
over x← µ1, we have

Pr[x(s1), . . . , x(st) is good | x(s1) = v1, . . . , x(st−1) = vt−1]

= Pr[x(st) /∈ {x(s1) = v1, . . . , x(st−1) = vt−1} | x(s1) = v1, . . . , x(st−1) = vt−1]

= Pr[a(x) /∈ {s1 ⊕ st, . . . , st−1 ⊕ st} | x(s1) = v1, . . . , x(st−1) = vt−1] a(x) = the a corresp. to x

Comment: the point of conditioning like this is to explicitly see that st is fixed and not a function of x; without such
conditioning, the queried indices are generally functions of x and we would need to argue why, e.g., we can’t have s1 = 0k and
st = a(x), so that a(x) is always in {s1 ⊕ st}. This is why I have chosen to be more rigorous here than de Wolf’s exposition.
The set {s1 ⊕ st, . . . , st−1 ⊕ st} in the last equation is the set that contains t− 1 elements: si ⊕ st where i ∈ [t− 1]. In class,
I got confused and thought {s1 ⊕ st, . . . , st−1 ⊕ st} was a set containing

(
t−1

2

)
elements, which led to the confusion later on

that got corrected by Victor.
Since the vis are distinct, conditioning on x(s1) = v1, . . . , x(st−1) = vt−1 implies that a(x) cannot belong to {si ⊕ sj |

i, j ∈ [t − 1], i 6= j} ∪ {0k} but can take any other value. Since a is initially chosen uniformly from {0, 1}k − {0k}, a(x) is
uniformly distributed over the set of other values, i.e.,

{0, 1}k − {0k} − {si ⊕ sj | i, j ∈ [t− 1], i 6= j}, (97)

which has at least 2k − 1−
(
t−1

2

)
elements. Therefore, by the union bound,

Pr[a(x) /∈ {s1 ⊕ st, . . . , st−1 ⊕ st} | x(s1) = v1, . . . , x(sk−1) = vk−1] ≥ 1− t− 1

2k − 1−
(
t−1

2

) . (98)

Write x is t-good if the responses to the first t queries T makes on x are distinct. Then, since the above analysis holds
for all distinct v1, . . . , vt−1, we have

Pr[x is t-good | x is (t− 1)-good] ≥ 1− t− 1

2k − 1−
(
t−1

2

) , (99)

using the fact that Pr[A | ∪̇iBi] ≥ mini Pr[A | Bi].
Therefore, since the last inequality holds for all t ∈ {1, . . . , d},

Pr[x is d-good] ≥
d∏
t=1

(
1− t− 1

2k − 1−
(
t−1

2

))
≥1−

d∑
t=1

t− 1

2k − 1−
(
t−1

2

) ∀a, b ∈ [0, 1], (1− a)(1− b) ≥ 1− a− b.

Assume wlog that d is such that 1 +
(
d−1

2

)
≤ 2k/2 (else we’re done) so

Pr[x is d-good] ≥ 1− 2

2k
1

2
d(d− 1) ≥ 1− d2

2k
. (100)

Conditioned on the event that x is d-good, the sequence of d responses to the d queries T makes is a uniformly random
sequence of d distinct elements in {0, 1, . . . , n− 1}, just like in the case x← µ0. Comment: this is intuitively clear from the
definition of µ1 but can also verify this by computing a product of conditional probabilities.

Therefore, if we let P1 := {x ∈ D1 | x is d-good}, then for all b ∈ {0, 1},

Pr[T (x) = b | x← µ0] = Pr[T (x) = b | x ∈ P1, x← µ1]. (101)

Finally, we apply lemma 6 to find that

Pr[T (x) = Simonn(x) | x← µ] ≤ 1

2
+

1

2

d2

2k
. (102)

Therefore, we must have d ≥
√

2k/3 = Ω(
√
n), as required.

Remark 11. The D0 of Simonn is the same as the D0 of Collisionn (when n is a power of 2). On the other hand, the D1

of Simonn is a subset of D1 of Collisionn. Therefore, any randomized decision tree that computes Collisionn (with bounded-
error 1/3) can also be used to compute Simonn (with bounded-error 1/3). Therefore R(Collisionn) ≥ R(Simonn). Therefore
O(
√
n) ≥ R(Collisionn) ≥ R(Simonn) ≥ Ω(

√
n), where the first inequality is from a few lectures ago and the last inequality

is what we just proved. So R(Simonn), R(Collisionn) = Θ(
√
n).

25

https://homepages.cwi.nl/~rdewolf/simonlowerbound.pdf

