Lecture 9

Proposition 10. $R\left(\operatorname{Simon}_{n}\right)=\Omega(\sqrt{n})$.
We will need the following lemma.
Lemma 6. Let $f, T: D:=D_{0} \dot{\cup} D_{1} \subseteq \Sigma^{n} \rightarrow\{0,1\}$. Let $f\left(D_{0}\right)=\{0\}$ and $f\left(D_{1}\right)=\{1\}$. Suppose μ_{0} is a distribution on D_{0} and μ_{1} is a distribution on D_{1}. Let μ denote the distribution on D such that $x \leftarrow \mu$ is defined by $b \leftarrow\{0,1\}$ and $x \leftarrow \mu_{b}$. Let $P_{1} \subseteq D_{1}$. Suppose that for all $b \in\{0,1\}$,

$$
\begin{equation*}
\operatorname{Pr}\left[T(x)=b \mid x \leftarrow \mu_{0}\right]=\operatorname{Pr}\left[T(x)=b \mid x \in P_{1}, x \leftarrow \mu_{1}\right] . \tag{94}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Pr}[T(x)=f(x) \mid x \leftarrow \mu] \leq \frac{1}{2}+\frac{1}{2} \operatorname{Pr}\left[x \notin P_{1} \mid x \leftarrow \mu_{1}\right] . \tag{95}
\end{equation*}
$$

Proof.

$$
\begin{array}{rlrl}
& \operatorname{Pr}[T(x)=f(x) \mid x \leftarrow \mu] & & \\
= & \frac{1}{2} \operatorname{Pr}\left[T(x)=0 \mid x \leftarrow \mu_{0}\right]+\frac{1}{2} \operatorname{Pr}\left[T(x)=1 \mid x \leftarrow \mu_{1}\right] & & \text { definition of } \mu \\
= & \frac{1}{2} \operatorname{Pr}\left[T(x)=0 \mid x \leftarrow \mu_{0}\right]+\frac{1}{2}\left(\operatorname{Pr}\left[T(x)=1 \mid x \in P_{1}, x \leftarrow \mu_{1}\right] \operatorname{Pr}\left[x \in P_{1} \mid x \leftarrow \mu_{1}\right]\right. & & \\
& \left.+\frac{1}{2} \operatorname{Pr}\left[T(x)=1 \mid x \notin P_{1}, x \leftarrow \mu_{1}\right] \operatorname{Pr}\left[x \notin P_{1} \mid x \leftarrow \mu_{1}\right]\right) & \text { law of total probability } \\
\leq & \frac{1}{2} \operatorname{Pr}\left[T(x)=0 \mid x \leftarrow \mu_{0}\right]+\frac{1}{2} \operatorname{Pr}\left[T(x)=1 \mid x \leftarrow \mu_{0}\right]+\frac{1}{2} \operatorname{Pr}\left[x \notin P_{1} \mid x \leftarrow \mu_{1}\right] & & \text { by lemma condition } \\
= & \frac{1}{2}+\frac{1}{2} \operatorname{Pr}\left[x \notin P_{1} \mid x \leftarrow \mu_{1}\right] &
\end{array}
$$

as required.
Comment: Apply this lemma to $f=\operatorname{Simon}_{n}$ and T the (function induced by the) decision tree.
Proof of proposition 10. (A more rigorous version of de Wolf's exposition.) By the averaging argument/easy direction of Yao's principle (i.e., the arguments we used at the beginning of the randomized lower bound proof for OR_{n}), it suffices to show the following. There exists a distribution μ over D such that if a DDT T satisfies

$$
\begin{equation*}
\operatorname{Pr}\left[T(x)=\operatorname{Simon}_{n}(x) \mid x \leftarrow \mu\right] \geq 2 / 3, \tag{96}
\end{equation*}
$$

then the depth d of T is at least $\Omega(\sqrt{n})$.
We assume without loss of generality (wlog) that

1. T never queries x at the same index twice, i.e., in all paths from root to leaf, the labels of the nodes are distinct.
2. T is balanced, i.e., every root-to-leaf path is length d.

This is wlog since any T without these properties can be simulated by another DDT with these two properties of no greater depth.

To define μ, we first define two distributions μ_{0} and μ_{1} on D_{0} and D_{1} respectively by the following sampling procedures. Then we define $x \leftarrow \mu$ by $b \leftarrow\{0,1\}$ and $x \leftarrow \mu_{b}$.

1. Definition of $x \leftarrow \mu_{0}$. For each $s \in\{0,1\}^{k}$, pick a distinct value in $\{0,1, \ldots, n-1\}$ for $x(s)$ uniformly at random. (So x is a uniformly random permutation of $\{0,1, \ldots, n-1\}$.)
2. Definition of $x \leftarrow \mu_{1}$. Pick $a \leftarrow\{0,1\}^{k}-\left\{0^{k}\right\}$, then for each set $\{s, s \oplus a\}$, where $s \in\{0,1\}^{k}$, pick a distinct value in $\{0,1, \ldots, n-1\}$ for $x(s)=x(s \oplus a)$ uniformly at random. Comment: the distribution defined is independent of how the "for each" loop is ordered.

Case $x \leftarrow \mu_{0}$. The sequence of d responses to the d queries T makes is a uniformly random sequence of d distinct elements in $\{0,1, \ldots, n-1\}$.

Case $x \leftarrow \mu_{1}$. Let $t \in\{1, \ldots, d\}$. Let $v_{1}, \ldots, v_{t-1} \in\{0,1, \ldots, n-1\}$ be distinct. Let $s_{1}, \ldots s_{t}$ denote the sequence of indices that T queries on x given $x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{t-1}\right)=v_{t-1}$. (Note s_{1}, \ldots, s_{t} are uniquely defined, in particular, s_{1} is the
label of the root of T.) Say the sequence $x\left(s_{1}\right), \ldots, x\left(s_{t}\right)$ is good if all its values are all distinct. Writing Pr for probability over $x \leftarrow \mu_{1}$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[x\left(s_{1}\right), \ldots, x\left(s_{t}\right) \text { is good } \mid x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{t-1}\right)=v_{t-1}\right] \\
= & \operatorname{Pr}\left[x\left(s_{t}\right) \notin\left\{x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{t-1}\right)=v_{t-1}\right\} \mid x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{t-1}\right)=v_{t-1}\right] \\
= & \operatorname{Pr}\left[a(x) \notin\left\{s_{1} \oplus s_{t}, \ldots, s_{t-1} \oplus s_{t}\right\} \mid x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{t-1}\right)=v_{t-1}\right] \quad a(x)=\text { the } a \text { corresp. to } x
\end{aligned}
$$

Comment: the point of conditioning like this is to explicitly see that s_{t} is fixed and not a function of x; without such conditioning, the queried indices are generally functions of x and we would need to argue why, e.g., we can't have $s_{1}=0^{k}$ and $s_{t}=a(x)$, so that $a(x)$ is always in $\left\{s_{1} \oplus s_{t}\right\}$. This is why I have chosen to be more rigorous here than de Wolf's exposition. The set $\left\{s_{1} \oplus s_{t}, \ldots, s_{t-1} \oplus s_{t}\right\}$ in the last equation is the set that contains $t-1$ elements: $s_{i} \oplus s_{t}$ where $i \in[t-1]$. In class, I got confused and thought $\left\{s_{1} \oplus s_{t}, \ldots, s_{t-1} \oplus s_{t}\right\}$ was a set containing $\binom{t-1}{2}$ elements, which led to the confusion later on that got corrected by Victor.

Since the $v_{i} s$ are distinct, conditioning on $x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{t-1}\right)=v_{t-1}$ implies that $a(x)$ cannot belong to $\left\{s_{i} \oplus s_{j} \mid\right.$ $i, j \in[t-1], i \neq j\} \cup\left\{0^{k}\right\}$ but can take any other value. Since a is initially chosen uniformly from $\{0,1\}^{k}-\left\{0^{k}\right\}, a(x)$ is uniformly distributed over the set of other values, i.e.,

$$
\begin{equation*}
\{0,1\}^{k}-\left\{0^{k}\right\}-\left\{s_{i} \oplus s_{j} \mid i, j \in[t-1], i \neq j\right\} \tag{97}
\end{equation*}
$$

which has at least $2^{k}-1-\binom{t-1}{2}$ elements. Therefore, by the union bound,

$$
\begin{equation*}
\operatorname{Pr}\left[a(x) \notin\left\{s_{1} \oplus s_{t}, \ldots, s_{t-1} \oplus s_{t}\right\} \mid x\left(s_{1}\right)=v_{1}, \ldots, x\left(s_{k-1}\right)=v_{k-1}\right] \geq 1-\frac{t-1}{2^{k}-1-\binom{t-1}{2}} . \tag{98}
\end{equation*}
$$

Write x is t-good if the responses to the first t queries T makes on x are distinct. Then, since the above analysis holds for all distinct v_{1}, \ldots, v_{t-1}, we have

$$
\begin{equation*}
\operatorname{Pr}[x \text { is } t \text {-good } \mid x \text { is }(t-1) \text {-good }] \geq 1-\frac{t-1}{2^{k}-1-\binom{t-1}{2}} \tag{99}
\end{equation*}
$$

using the fact that $\operatorname{Pr}\left[A \mid \dot{\cup}_{i} B_{i}\right] \geq \min _{i} \operatorname{Pr}\left[A \mid B_{i}\right]$.
Therefore, since the last inequality holds for all $t \in\{1, \ldots, d\}$,

$$
\begin{aligned}
\operatorname{Pr}[x \text { is } d \text {-good }] & \geq \prod_{t=1}^{d}\left(1-\frac{t-1}{2^{k}-1-\binom{t-1}{2}}\right) \\
& \geq 1-\sum_{t=1}^{d} \frac{t-1}{2^{k}-1-\binom{t-1}{2}} \quad \forall a, b \in[0,1],(1-a)(1-b) \geq 1-a-b .
\end{aligned}
$$

Assume wlog that d is such that $1+\binom{d-1}{2} \leq 2^{k} / 2$ (else we're done) so

$$
\begin{equation*}
\operatorname{Pr}[x \text { is } d \text {-good }] \geq 1-\frac{2}{2^{k}} \frac{1}{2} d(d-1) \geq 1-\frac{d^{2}}{2^{k}} \tag{100}
\end{equation*}
$$

Conditioned on the event that x is d-good, the sequence of d responses to the d queries T makes is a uniformly random sequence of d distinct elements in $\{0,1, \ldots, n-1\}$, just like in the case $x \leftarrow \mu_{0}$. Comment: this is intuitively clear from the definition of μ_{1} but can also verify this by computing a product of conditional probabilities.

Therefore, if we let $P_{1}:=\left\{x \in D_{1} \mid x\right.$ is d-good $\}$, then for all $b \in\{0,1\}$,

$$
\begin{equation*}
\operatorname{Pr}\left[T(x)=b \mid x \leftarrow \mu_{0}\right]=\operatorname{Pr}\left[T(x)=b \mid x \in P_{1}, x \leftarrow \mu_{1}\right] . \tag{101}
\end{equation*}
$$

Finally, we apply lemma 6 to find that

$$
\begin{equation*}
\operatorname{Pr}\left[T(x)=\operatorname{Simon}_{n}(x) \mid x \leftarrow \mu\right] \leq \frac{1}{2}+\frac{1}{2} \frac{d^{2}}{2^{k}} \tag{102}
\end{equation*}
$$

Therefore, we must have $d \geq \sqrt{2^{k} / 3}=\Omega(\sqrt{n})$, as required.
Remark 11. The D_{0} of Simon_{n} is the same as the D_{0} of Collision ${ }_{n}$ (when n is a power of 2). On the other hand, the D_{1} of Simon_{n} is a subset of D_{1} of Collision n_{n}. Therefore, any randomized decision tree that computes Collision ${ }_{n}$ (with boundederror $1 / 3$) can also be used to compute Simon_{n} (with bounded-error $\left.1 / 3\right)$. Therefore $R\left(\operatorname{Collision}_{n}\right) \geq R\left(\operatorname{Simon}_{n}\right)$. Therefore $O(\sqrt{n}) \geq R\left(\right.$ Collision $\left._{n}\right) \geq R\left(\operatorname{Simon}_{n}\right) \geq \Omega(\sqrt{n})$, where the first inequality is from a few lectures ago and the last inequality is what we just proved. So $R\left(\operatorname{Simon}_{n}\right), R\left(\right.$ Collision $\left._{n}\right)=\Theta(\sqrt{n})$.

