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Preface

This is a set of lecture notes on quantum algorithms. A feature of these notes is that it starts from (and focuses on)
query complexity. Benefits of this approach are discussed in Lecture 1. The connection to the more standard measure of
complexity, time complexity, is introduced only later, in Lecture 5. Much of the second half of this course follows a set of
excellent lecture notes by Andrew M. Childs, available at [AMC]. In that case, I have referred the reader to the relevant
parts of [AMC] that I covered.
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Lecture 1

Brief introduction. Quantum computing is computation using the laws of quantum mechanics that were discovered in
the early 20th century. Sometimes the power of quantum computing is described as: n quantum bits or qubits can be in
the 2n states of n bits at the same time. Therefore, it can solve a problem by simply trying 2n, i.e., a large number for n
large, possible solutions at the same time. But this explanation is not really correct. In fact, employing a similar logic, we
may also say that n classical bits can be in 2n states at the same time in a classical randomized computation where the n
bits are determined by n random coin flips. In fact, quantum computation is similar to randomized computation in many
ways. However, we will see that it subsumes randomized computation and can be provably more powerful than randomized
computation in the so-called “query model” of computation. Much of this course will focus on the query model, which is not
the same as the standard model of computation, known as the Turing model. We do this for three reasons:

1. Quantum-over-classical speedups (or simply quantum speedups) can be proven rigorously in the query model. In
contrast, there is no rigorous proof of quantum speedup in the Turing model. This is because it is notoriously difficult
to prove classical lower bounds in the Turing model.

2. Quantum speedups in the query model often translates into “apparent speedups” in the Turing model, where “ap-
parent speedups” means quantum algorithms that are faster than any known classical algorithm. Moreover, quantum
algorithms in the query model often contain the key ideas of their translations in the Turing model. For example, the
apparent quantum speedup for factoring discovered by Peter Shor was motivated by a quantum speedup in the query
model for the so-called Simon’s problem.

3. We can describe quantum algorithms in the query model with much less setup than in the Turing model.

Let’s get started! An alphabet is a finite non-empty set. N denotes the positive integers (no zero).
Let n,m ∈ N, Σ := {0, 1, . . . ,m− 1}, D and Γ be alphabets, and

f : D ⊆ Σn → Γ. (1)

Mainly deal with case where Γ = {0, 1}.

Remark 1. (Remarks are informal.)

1. Main question of query complexity: given x ∈ D, how many bits of x need to be read (queried) to compute f(x)? (At
most n.)

2. Three models of query computation: deterministic D(f), randomized R(f), quantum Q(f). Quantum speedup means
Q(f) < R(f). Note that this means to establish a quantum speedup, we not only need to give a quantum algorithm
but a classical lower bound. Therefore, a portion of this class will be devoted to classical analysis.

3. The access to the input y is different in the Turing model: y would be input to a classical Turing machine as a string.
Quantum time complexity, for example, is then defined to be the time taken by that Turing machine to output the
description of a quantum circuit Cy that computes the solution of the problem. The x ∈ {0, 1}n in the query model
more appropriately translates to a function x : [n]→ {0, 1} whose circuit can be described efficiently using the input y
in the Turing model. Hopefully this will make more sense when we discuss how the query speedup for OR translates
to an apparent speedup for kSAT – see Lectures 5 and 6.

Example 1.

1. f : {0, 1}3 → {0, 1}, f(x) = (x1 ∧ x2) ∨ (¬x1 ∧ x3). How many bits of the input x ∈ {0, 1} do we need to read to
determine f? Could always read all 3 bits but here there’s a cleverer way. Read the bit x1, then read x2 if x1 = 1 and
x3 if x1 = 0.

2. f = ORn : {0, 1}n → {0, 1}
ORn(x) = x1 ∨ x2 ∨ · · · ∨ xn. (2)

Computing ORn models search among n elements since computing ORn(x) is equivalent to finding a 1 among the n
bits of x. Facts:

(a) D(ORn) = R(ORn) = Θ(n) 1 Intuition: for a “worst-case” input x, you might query the first n− 1 bits and they
all show up as 0 so still need to make one more query to decide whether OR(x) = 0 or OR(x) = 1.

(b) Q(ORn) = Θ(
√
n) – due to Grover search, will see in Lecture 3.

1Asymptotic notation: for f : N → C, f(n) = Θ(n) means there exists constants 0 < c1 < c2 and n0 ∈ N such that for all n ∈ N s.t. n > n0:
c1n ≤ |f(n)| ≤ c2n.
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(Note that computing OR2n relates to solving SAT on n Boolean variables since the latter is about searching for a
satisfying assignment among 2n possible assignments.)

The definitions of query complexity are dependent on the domain and codomain of the f under consideration, i.e., they
are dependent on D, m, n, Γ. For convenience of notation, these dependencies are left implicit.

Definition 1 (Deterministic decision tree (or query algorithm)). A deterministic decision tree is an m-ary tree T with a
unique vertex labelled as “root”, together with the following additional data:

1. Each leaf2 of T is labelled by an element in Γ.

2. Each non-leaf vertex of T is labelled by an element in [n] := {1, 2, . . . , n}.

3. For all non-leaf vertices v, the m edges between v and its m children are each labelled by a unique element in
{0, 1, . . . ,m − 1}. (For each non-leaf vertex of T , its neighbors going away from the root are known as its children.
Each non-leaf vertex of T has exactly m children.)

Definition 2 (Deterministic query computation). Let T be a deterministic decision tree and x ∈ D. We write T (x) ∈ {0, 1}
for the bit output by the following procedure

Set vcurrent to be the root vertex. Then, repeat the following until the label of a leaf is output:

1. If vcurrent is a leaf then output its label.

2. Otherwise, let i ∈ [n] be the label of vcurrent and let v be the child of vcurrent such that the edge {vcurrent, v} is
labelled by xi. Set vcurrent = v.

We say that a deterministic decision tree T computes f if

∀x ∈ D, T (x) = f(x). (3)

[The “for all” quantifier means this is sometimes referred to as “T computes f in the worst case”.]

Definition 3 (Deterministic query complexity). Given a deterministic decision tree (DDT) T , its depth depth(T ) is the
maximum length of a root-to-leaf path in T . Then

D(f) := min
T DDT, T computes f

depth(T ) (4)

Definition 4 (Randomized decision tree (or query algorithm)). A randomized decision tree is a probability distribution T
over deterministic decision trees.

Definition 5 (Randomized query computation). Given x ∈ D and a randomized decision tree T , we write T (x) for the
random variable on Γ defined by: for all i ∈ Γ,

Pr[T (x) = i] := Pr[T (x) = i | T ← T ]. (5)

Let ε ∈ (0, 1/2). We say that a randomized decision tree T computes f with (two-sided) bounded-error ε if

∀x ∈ D, Pr[T (x) = f(x)] ≥ 1− ε. (6)

Note that
Pr[T (x) = f(x)] = Pr[T (x) = f(x) | T ← T ] =

∑
T

Pr[T | T ← T ] · 1[T (x) = f(x)]. (7)

Definition 6 (Randomized query complexity). Given a randomized decision tree (RDT) T , its depth is defined by

depth(T ) := max{depth(T ) | Pr[T | T ← T ] > 0}. (8)

Then for ε ∈ (0, 1/2),

Rε(f) := min{depth(T ) | T RDT, T computes f with bounded-error ε}. (9)

Also standard to write
R(f) := R1/3(f). (10)

Proposition 1. D(ORn) = n.

Proof. D(ORn) ≤ n is obvious (what’s the DDT?).
For D(ORn) ≥ n. Suppose for contradiction that there is a DDT T with depth(T ) < n that computes ORn. Consider

the root-to-leaf path defined by following edges labelled by 0. We may assume wlog (without loss of generality) that the leaf
vertex on this path is labelled by 0, else T (0n) = 1 6= ORn(0n), contradiction. Suppose the vertices on this path are labelled
by i1, . . . , id, where d < n. Let j ∈ [n]− {i1, . . . , id} (exists since d < n). Let x ∈ {0, 1}n be the all-zeros bitstring except for
a 1 at position j. Then T (x) = 0 6= ORn(x) contradiction.

2A leaf of T is a vertex of degree 1.
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Lecture 2

Proposition 2. For ε ∈ (0, 1/2), we have Rε(ORn) ≥ (1− 2ε)n.

Proof. Let T be a randomized decision tree that computes f with bounded-error ε. Then, for all x ∈ D,

1− ε ≤Pr[T (x) = f(x) | T ← T ]

≤
∑
T

Pr[T | T ← T ] · 1[T (x) = f(x)].

Let µ be a distribution over {0, 1}n. Take the expectation of above equation over µ

1− ε ≤
∑
T

Pr[T | T ← T ] E[1[T (x) = f(x) | x← µ]] =
∑
T

Pr[T | T ← T ] Pr[T (x) = f(x) | x← µ]. (11)

Since Pr[T | T ← T ] is a probability distribution over DDTs, there must exist a T ∗ in the support of T such that

Pr[T ∗(x) = f(x) | x← µ] ≥ 1− ε. (12)

(The above steps form the “easy direction of Yao’s principle” – see the remark after the proof.)
The above holds for an arbitrary distribution µ. To continue the proof, we set µ as follows

µ(x) =


1
2 if x = 0n,
1

2n if |x| = 1,

0 otherwise,

(13)

where |x| denotes Hamming weight.
For x ∈ D, let T ∗[x] denote the path followed by T ∗ on input x. Then define

Bad := {x ∈ D | All edges of T ∗[x] are labelled by 0}. (14)

Now

Pr[x ∈ Bad | x← µ] =
1

2
+
n− k

2n
= 1− k

2n
, (15)

where k ≤ depth(T ) is the length of the root-to-leaf path where all edges are labelled by 0. (Note that this is a fixed path.)
Comment: The point is that the decision tree T ∗, sees the input x as the all-zeros string whp (with high probability) over

x← µ, so the function it computes is a constant whp.
Two cases:

1. T ∗ outputs 0 if it only sees all-zeros. Then,

Pr[T ∗(x) = 0]

= Pr[T ∗(x) = 0 | x ∈ Bad] Pr[x ∈ Bad] + Pr[T ∗(x) = 0 | x /∈ Bad] Pr[x /∈ Bad] ≥ 1− k

2n
,

where all probabilities are over x← µ. Then

Pr[T ∗(x) = f(x)] = Pr[T ∗(x) = f(x) = 0] + Pr[T ∗(x) = f(x) = 1]

≤Pr[f(x) = 0] + Pr[T ∗(x) = 1]

≤1

2
+

k

2n
.

(Note that Pr[f(x) = 0] = 1/2.) Therefore, for the left-hand side to be at least 1− ε, we require

k ≥ (1− 2ε)n, (16)

and therefore
depth(T ) ≥ (1− 2ε)n. (17)

2. T ∗ outputs 1 if it only sees all-zeros. Then,

Pr[T ∗(x) = 1]

= Pr[T ∗(x) = 1 | x ∈ Bad] Pr[x ∈ Bad] + Pr[T ∗(x) = 1 | x /∈ Bad] Pr[x /∈ Bad] ≥ 1− k

2n
,
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where all probabilities are over x← µ.

[The analysis is symmetrical to the first case.] For completeness:

Pr[T ∗(x) = f(x)] = Pr[T ∗(x) = f(x) = 0] + Pr[T ∗(x) = f(x) = 1]

= Pr[f(x) = 1] + Pr[T ∗(x) = 0]

≤1

2
+

k

2n
.

Therefore, for the left-hand side to be at least 1− ε, we require

k ≥ (1− 2ε)n, (18)

and therefore
depth(T ) ≥ (1− 2ε)n. (19)

Remark 2.

1. Question: can we prove the best possible lower bound on Rε(f) by lower bounding the depth of a DDT (deterministic
decision tree) that succeeds in computing f(x) with probability ≥ 1−ε where x is sampled according to some distribution
µ? Answer: Yes! This is the content of the “hard direction of Yao’s principle”; it is a corollary of von Neumann’s
minimax theorem that was first observed by Andrew Yao.

2. The above proof actually shows the following stronger result. Let OR≤1
n : D≤1 → {0, 1}, where D≤1 := {x ∈

{0, 1}n, |x| ≤ 1} (| · | denotes Hamming weight.) Then

Rε(OR≤1
n ) ≥ (1− 2ε)n. (20)

This is because the distribution µ defined in the proof is supported on D≤1.

Quantum query computation. To define quantum computation, we will use Dirac notation. This notation is an alterna-
tive notation for linear algebra. It is possible to do quantum information without using this notation (e.g., famous quantum
information theorist John Watrous has a book called “Theory of Quantum Information” that avoids Dirac notation entirely)
but it has become standard and I find it convenient.

Definition 7 (Dirac notation). For n ∈ N, an n-dimension quantum state (or simply, state) is a unit column vector in Cn,
i.e., v = (v1, . . . , vn)> with ‖v‖2 = 1. (Euclidean norm: ‖v‖ :=

√∑
i |vi|2.)

The vector v is written in Dirac notation as |v〉 and called a “ket”. The complex conjugate transpose of |v〉 is written 〈v|
and called a “bra”, i.e., 〈v| := v†. The naming is based on the observation that a bra 〈v| (a row vector) can be right-multiplied
by a |w〉 to give the inner product “braket” between v and w, i.e., 〈v|w〉 := 〈v| |w〉 = v†w = 〈v, w〉 ∈ C. Note that 〈v| can
also be left-multiplied by |w〉 to give the outer product between w and v, i.e., |w〉〈v| = wv† ∈ Cn×n. The tensor product of
quantum states is their Kronecker product: if |v〉 ∈ Cn1 and |w〉 ∈ Cn2 , then |v〉 |w〉 := |v〉 ⊗ |w〉 ∈ Cn1 ⊗ Cn2 = Cn1n2 .

Example of Kronecker product:

(
u1

u2

)
⊗

v1

v2

v3

 =


u1v1

u1v2

u1v3

u2v1

u2v2

u3v3

 . (21)

The computational basis of CN is the set of vectors {e(1), . . . e(N)}, where e(i) = (0, . . . , 1 . . . , 0)> is the all-zeros vector
except with a 1 in the ith coordinate. It is conventional to reserve the symbol |i〉 for e(i+1) and 〈i| for e(i+1)†. Then, for

example, |v〉 =
∑N−1
i=0 vi |i〉 and 〈v| =

∑N−1
i=0 v∗i 〈i|. An n-qubit quantum state is a 2n-dimensional quantum state. Then, an

n-qubit state can be written as
∑
x∈{0,1}n αx |x〉, where αx ∈ C for all x and |x〉 := |x1〉 |x2〉 . . . |xn〉 ∈ (C2)⊗n = C2n

.

Can also take Kronecker products of matrices, e.g., suppose V is an n× n matrix, then(
u11 u12

u21 u22

)
⊗ V =

(
u11V u12V
u21V u22V

)
RHS is a 2n× 2n matrix. (22)

Definition 8 (Projective measurement). Let Γ be an alphabet and d ∈ N. A Γ-outcome projective measurement M on Cd

is a set of orthogonal projectors {Πi | i ∈ Γ}, i.e., ∀i, j ∈ Γ, ΠiΠj = δi,jΠi, ∀i ∈ Γ,Π†i = Πi, and
∑
i∈Γ Πi = 1d.

Given a quantum state |ψ〉 ∈ Cd, measuring |ψ〉 using M refers to a process that
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1. Outputs i ∈ Γ with probability ‖Πi |ψ〉 ‖2. This i is referred to as the measurement outcome.

2. Changes the quantum state to
Πi |ψ〉
‖Πi |ψ〉 ‖

. (23)

Measurement in the computational basis on Cd refers to the d-outcome projective measurement defined by {|i〉〈i| | i ∈
{0, 1, . . . , d− 1}}.
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Lecture 3

Definition 9 (Quantum query algorithm). A quantum query algorithm of depth d ∈ N is defined by the following data:

1. w ∈ N. (Dimension of the workspace, i.e., non-query, part of the algorithm.)

2. d+ 1 unitary matrices U0, U1, . . . , Ud ∈ Cn ⊗ Cm ⊗ Cw = Cnmw.

3. A Γ-outcome projective measurement M := {Πs | s ∈ Γ} on Cnmw.

Definition 10 (Quantum oracle). For x ∈ {0, . . . ,m − 1}n, the quantum oracle of x is the unitary matrix Ox ∈ Cnm×nm
defined by

Ox |i〉 |j〉 = |i〉 |j + xi+1 mod m〉 , (24)

for all i ∈ {0, 1, . . . , n−1} and j ∈ {0, . . . ,m−1}. (And linearly extended. mod m maps integers to the range {0, . . . ,m−1})
In the special case where m = 2, this is the same as

Ox |i〉 |b〉 = |i〉 |b⊕ xi+1〉 , (25)

for all i ∈ {0, 1, . . . , n− 1} and b ∈ {0, 1}, where ⊕ denotes XOR and |b〉 represents a 1-qubit quantum state.

Definition 11 (Quantum query computation). Given x ∈ D and a quantum query algorithm A, we write A(x) for the
random variable on {0, 1} defined by, for all i ∈ Γ

Pr[A(x) = i] := ‖Πi · Ud(Ox ⊗ 1w) . . . U1(Ox ⊗ 1w)U0 |0〉 ‖2, (26)

where 1w ∈ Cw×w is the identity matrix and we recall |0〉 ∈ Cnmw is the first computational basis vector. (Note there are d
occurrences of Ox on the RHS.)

For ε ∈ (0, 1/2), we say that a quantum query algorithm A computes f with (two-sided) bounded-error ε if

∀x ∈ D, Pr[A(x) = f(x)] ≥ 1− ε, (27)

where the probability is over the random variable A(x).

Definition 12 (Quantum query complexity). For ε ∈ (0, 1/2), Qε(f) is defined to be the minimum depth of any quantum
query algorithm that computes f with (two-sided) bounded-error ε. Also standard to write Q(f) = Q1/3(f).

Grover’s algorithm. Recall
ORn : {0, 1}n → {0, 1}. (28)

It will be convenient to work with an alternative form of the quantum oracle.

Definition 13 (Quantum phase oracle). For x ∈ {0, 1}n the quantum phase oracle of x is the unitary matrix Ux ∈ C2n×2n

defined by
Ux |i〉 |b〉 = (−1)xi+1·b |i〉 |b〉 . (29)

Let

H :=
1√
2

(
1 1
1 −1

)
(30)

denote the Hadamard matrix.
By the next lemma, it is clear that quantum query complexity does not change whether we use the phase oracle or the

normal oracle.

Lemma 1 (Phase kickback trick). For all x ∈ {0, 1}n, Ux = (1n⊗H)Ox(1n⊗H). Moreover, since H2 = 12, we also have
Ox = (1n⊗H)Ux(1n⊗H).

Note that the quantum phase oracle of x can be implemented using one call to the quantum oracle of x together with
unitaries independent of x, and vice versa. Therefore, if we defined quantum query complexity using the quantum phase
oracle instead of the quantum oracle, the value of quantum query complexity would not change.

Proof. Note that for b ∈ {0, 1}, we have

H |b〉 =
1√
2

(|0〉+ (−1)b |1〉). (31)
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Then

|i〉 |b〉 1n⊗H7→ |i〉 1√
2

(|0〉+ (−1)b |1〉) Ox7→ 1√
2
|i〉 (|xi+1〉+ (−1)b |xi+1 ⊕ 1〉)

1n⊗H7→ 1√
2
|i〉 ( 1√

2
(|0〉+ (−1)xi+1 |1〉) + (−1)b

1√
2

(|0〉+ (−1)xi+1⊕1 |1〉))

=
1

2
|i〉 ((1 + (−1)b) |0〉+ (−1)xi+1(1− (−1)b) |1〉)

=(−1)xi+1·b |i〉 |b〉 ,

as required.

Remark 3. There is a generalization of the quantum phase oracle definition for m > 2 (x ∈ {0, 1, . . . ,m−1}n) — see [AMC]
Section 20.2.

For t ∈ N, define OR0,t
n to be ORn with the restricted domain D0,t := {x ∈ {0, 1}n | |x| ∈ {0, t}}.

Proposition 3 (Grover’s algorithm). For all n, t ∈ N with t ≤ n/3,

Q(OR0,t
n ) ≤ π

4

√
n

t
+

1

2
. (32)

Proof. Let |ψ〉 denote the n-dimensional quantum state

|ψ〉 :=
1√
n

n−1∑
i=0

|i〉 , (33)

and let G ∈ Cn×n denote the following unitary matrix

G := 1n−2|ψ〉〈ψ|. (34)

For x ∈ {0, 1}n, let

Vx :=

n−1∑
i=0

(−1)xi+1 |i〉〈i| = 1n−2
∑

i|xi+1=1

|i〉〈i|. (35)

(Vx can be instantiated using the quantum phase oracle with b set to 1, and still uses 1 call to Ox.)
Let

Π0 := |ψ〉〈ψ| and Π1 := 1n−Π0. (36)

Clearly, {Π0,Π1} defines a {0, 1}-outcome measurement on Cn.
For k ∈ N, we now consider the following quantity, which can be seen as the probability that a k-query quantum algorithm

outputs 0:
px := ‖Π0(GVx)k |ψ〉 ‖2. (37)

Two cases:

1. x = 0n. In this case Vx = 1n and Gk |ψ〉 = (−1)k |ψ〉 so px = 1.

2. |x| = t. Define the following orthogonal quantum states:

|ψ0〉 :=
1√
n− t

∑
i|xi+1=0

|i〉 , (38)

|ψ1〉 :=
1√
t

∑
i|xi+1=1

|i〉 . (39)

Then

|ψ〉 =

√
1− t

n
|ψ0〉+

√
t

n
|ψ1〉 = cos(θ) |ψ0〉+ sin(θ) |ψ1〉 , (40)

where θ := arcsin(
√
t/n) ∈ (0, π/2].

We have

GVx |ψ0〉 = G |ψ0〉 = |ψ0〉 − 2 cos(θ) |ψ〉 = (1− 2 cos2(θ)) |ψ0〉 − 2 cos(θ) sin(θ) |ψ1〉 = − cos(2θ) |ψ0〉 − sin(2θ) |ψ1〉 .
GVx |ψ1〉 = −G |ψ1〉 = − |ψ1〉+ 2 sin(θ) |ψ〉 = 2 sin(θ) cos(θ) |ψ0〉+ (2 sin2(θ)− 1) |ψ1〉 = sin(2θ) |ψ0〉 − cos(2θ) |ψ1〉 .
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Therefore, GVx applied to the state |ψ〉 always stays in the 2-dimensional subspace span(|ψ0〉 , |ψ1〉) ≤ Cn. Therefore,
we can reduce the analysis to linear algebra in C2 by working in the basis |ψ0〉 , |ψ1〉. In this basis, |ψ〉 is represented as(

cos(θ)
sin(θ)

)
, (41)

and −GVx is represented as

A :=

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
. (42)

This is the rotation matrix by angle 2θ anticlockwise. Therefore,

Ak =

(
cos(2kθ) − sin(2kθ)
sin(2kθ) cos(2kθ)

)
. (43)

(This is geometrically intuitive, but can also prove this rigorously by diagonalizing A and then taking the kth power,
as in Homework 1.)

Therefore,

Ak
(

cos(θ)
sin(θ)

)
=

(
cos(2kθ) cos(θ)− sin(2kθ) sin(θ)
sin(2kθ) cos(θ) + cos(2kθ) sin(θ)

)
=

(
cos((2k + 1)θ)
sin((2k + 1)θ)

)
. (44)

Therefore,
(GVx)k |ψ〉 = (−1)k(cos((2k + 1)θ) |ψ0〉+ sin((2k + 1)θ) |ψ1〉). (45)

Therefore,

px =[cos(θ) cos((2k + 1)θ) + sin(θ) sin((2k + 1)θ)]2 = cos2(2kθ).

Let r := π
4θ and k := bre ∈ [r − 1/2, r + 1/2] (where b·e denotes rounding to the nearest integer). Then

px = cos2(2kθ) ≤ cos2(2(r − 1/2)θ) (to see the ≤, draw cos2(A) around A = π/2) (46)

= cos2(π/2− θ) = sin2(θ) =
t

n
≤ 1/3. (last ≤ by proposition conditions) (47)

Therefore,

Q(OR0,t
n ) ≤ k := b π

4θ
e ≤ π

4θ
+

1

2
=

π

4 arcsin(
√
t/n)

+
1

2
≤ π

4

√
n

t
+

1

2
, (48)

where the last inequality uses arcsin(a) ≥ a for all a ∈ [0, 1].
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Lecture 4

We have now seen that R(OR0,1
n ) ≥ n/3 but Q(OR0,1

n ) ≤ π
4

√
n+ 1

2 , which completes our first rigorous proof of a (quadratic)
quantum speedup in terms of n within the query model.

In this lecture, we’ll see two very useful principles of quantum algorithm design given as the two items in Fact 1 below.
We will apply these two principles to show that the quantum query complexity of ORn (without any restriction on domain)
is also O(

√
n). In later lectures, we will take these principles for granted and not explicitly mention them.

Fact 1.

1. Quantum (query) algorithms can efficiently simulate randomized (query) algorithms. In particular Q(f) ≤ R(f) for
any f . Reference: Section 2.3.3 of [de Wolf thesis].

Proof sketch. We will see how a quantum query algorithm can simulate a DDT first by way of an example: consider
the obvious depth-2 DDT T that computes (¬x1 ∧ x2) ∨ (x1 ∧ ¬x3) with 1 labelling the root.

We will use the following

Fact (*). Suppose g : {0, 1 . . . , a− 1} → {0, 1, . . . , b− 1}, then there exists a unitary Ug (in fact permutation matrix)
acting on the space Ca ⊗ Cb = Cab (Ug ∈ Cab×ab) such that

Ug |i〉 |j〉 = |i〉 |j + g(i) mod b〉 (49)

for all i ∈ {0, 1, . . . , a− 1} and j ∈ {0, 1, . . . , b− 1}.
(Proof: Eq. (49) completely defines Ug, check that the definition implies Ug is unitary – in fact, a permutation matrix.)

Let I : {0, 1} → {2, 3} be defined by I(0) = 2 and I(1) = 3. (I maps the bit value of x1 to the index that is queried
next.) Let I − 1 denote the function that first applies I and then subtracts 1. Let h : {0, 1}× {0, 1, 2}× {0, 1} → {0, 1}
be defined by

h(0, 2− 1, 0) = 0, h(0, 2− 1, 1) = 1, h(1, 3− 1, 0) = 1, h(1, 3− 1, 1) = 0. (50)

We have defined h such that h(a, I − 1, b) is defined to be the value that T outputs if x1 = a, I is the index of the
variable queried next, and xI = b.

Register dimensions C3 ⊗ C2 ⊗ C3 ⊗ C2 ⊗ C2:

|0〉 |0〉︸ ︷︷ ︸
query registers

|0〉 |0〉 |0〉︸ ︷︷ ︸
workspace registers

Ox7→ |0〉 |x1〉 |0〉 |0〉 |0〉
UI−17→ |0〉 |x1〉 |I(x1)− 1〉 |0〉 |0〉 notation follows fact (*)

Ox7→ |0〉 |x1〉 |I(x1)− 1〉 |xI(x1)〉 |0〉
Uh7→ |0〉 |x1〉 |I(x1)− 1〉 |xI(x1)〉 |h(x1, I(x1)− 1, xI(x1))〉 notation follows fact (*)

= |0〉 |x1〉 |I(x1)− 1〉 |xI(x1)〉 |T (x)〉 definition of h

where the
A7→ notation means application of matrix A (suitably tensored with identity matrices), and the last line uses

the definition of h. Then measuring using {Π0 := 136⊗|0〉〈0|,Π1 := 136⊗|1〉〈1|} gives outcome T (x) (with probability
1).

What about RDTs? Recall an RDT is a distribution (pi, Ti)
K−1
i=0 over DDTs. We have seen how Ti can be simulated

by a quantum query algorithm Ai for each i. Suppose Ai is specified by unitaries {U ij}j=0,...,d. Then the RDT can be
simulated by a quantum query algorithm A that starts with the state

|ψ0〉 :=

K−1∑
i=0

U i0 |0〉 ⊗
√
pi |i〉 . (51)

(More precisely, we can define the U0 of A to be any unitary such that U0 |0〉 = |ψ0〉.) Then for j ∈ {1, . . . , d}, Uj of A
is defined to be

Uj :=

K−1∑
i=0

U ij ⊗ |i〉〈i|. (52)
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The measurement of A is still {Π0 := |0〉〈0|,Π1 := |0〉〈0|} (tensored with identities so that the Πbs only act non-trivially
on the single register that contains {Ti(x) | i ∈ {0, . . . ,K − 1}}.

2. Principle of deferred measurement.

In our definition of quantum query complexity, there is one measurement coming at the end. But in fact, could have
also allowed “intermediate measurements”. The principle of deferred measurement says that such measurements can
always be simulated by a measurement at the end.

Proof of principle of deferred measurement. Suppose we make a measurementM := {Π1, . . . ,Πk} on a state |ψ〉 and if
the measurement outcome is i ∈ [k], we apply unitary Ui to another state |ψ′〉. Comment: in Simon’s problem (later),
need |ψ′〉 to be the postmeasurement state of |ψ〉—but the proof is the same. Then the effect of this procedure is that
with probability ‖Πi |ψ〉 ‖2, we end up with final state Ui |ψ′〉.
Now consider the following simulation: we apply the unitary

U :=

n∑
i=1

Πi ⊗ Ui (53)

to the state |ψ〉 |ψ′〉 and then measure the first register usingM. (Note U is unitary: UU† =
∑n
i=1 Πi⊗Ui ·

∑n
j=1 Πj ⊗

U†j =
∑n
i=1 Πi ⊗ I = I; Likewise U†U = I.)

Then the probability of observing outcome i ∈ [k] is

‖(Πi ⊗ 1)U |ψ〉 |ψ′〉 ‖2 = ‖Πi |ψ〉 ⊗ Ui |ψ′〉 ‖2 = ‖Πi |ψ〉 ‖2, (54)

where the last equality uses the fact that ‖u ⊗ v‖ = ‖u‖‖v‖ and ‖V u‖ = ‖V ‖ for unitary V . And the state on the
second register becomes Ui |ψ′〉. This is precisely the same effect as the original procedure where the measurement
comes first.

Using these facts (implicitly), can show the following.

Proposition 4. There exists c > 0 such that for all n ∈ N, we have

Q(ORn) ≤ c
√
n. (55)

Proof sketch. First, we may assume that |x| ≤ 0.01n. Else, if we randomly query 10000 indices of x, we’ll not find a 1 (i.e.,
fail to distinguish the input from 0n) with probability at most(

1− 0.01n

n

)10000

≤ e−100 = negligible3 (56)

where the inequality uses 1− x ≤ e−x for all x ≥ 0.
From the analysis before, we see that, on input x ∈ {0, 1}n using k queries we can get the probability of outputting 0 to

be

px(k) = cos2(2θxk) =
1 + cos(4θxk)

2
, (57)

where θx = arcsin(
√
|x|/n). Plot the graph of px(k) as a function of k; note that its period Tx satisfies

15 ≤ π

2 arcsin
√

0.01
≤ Tx :=

π

2θx
≤ π

2

√
n, (58)

where the second inequality uses the fact that |x| ≤ 0.01n and the last inequality uses |x| ≥ 1 (together with the monotonicity
of arcsin(a) for a ∈ [0, 1] and arcsin(a) ≥ a for a ∈ [0, 1]).

Observation: as k runs over the interval [1, dπ2
√
ne], px(k) runs over at least one period (by the second inequality of

Eq. (58)) and each period must span over at least 15 positive integers (by the first inequality of Eq. (58)).

3Note that this is “negligible” since we only care about computing ORn with bounded error 1/3 and compared to 1/3, e−100 is negligible. To
argue this formally, we need to consider the probabilities of failure from all sources (there’s another source later on), add them together (cf. the
“union bound” or “Boole’s inequality” on Wikipedia) and show that the sum is ≤ 1/3.

11



The last step of the algorithm is:

Repeat the following 10000 times: choose k ∈ N uniformly at random from [1, dπ2
√
ne], run Grover’s quantum query

algorithm which has pk(x) probability of outputting 0 (i.e., the measurement outcome is 0). If the output is 1, return 1.
If all repeats give output 0, return 0.

Clearly the quantum query algorithm uses O(
√
n) queries.

The intuition for correctness is that if we choose an integer k uniformly at random from [1, dπ2
√
ne], the previous “Obser-

vation” means that px(k) will be constant away from 1 with constant probability (over the randomness of the choice of k)
– think pictorially! This means that the quantum query algorithm will output 1 with constant probability. (Recall px(k) is
the probability of the quantum algorithm outputting 0.) Since we would never see 1 when x = 0n, we can just repeat this a
large number of times and output 1 if and only if the quantum query algorithm outputs a 1 in any of those repeats. This
allows us to suppress the error probability to be negligible.4

Remark 4.

1. To see that the query algorithm described in the proof is a bonafide quantum query algorithm according to our
definition, we need to use both facts that we established earlier, i.e., quantum can simulate randomized and principle of
deferred measurement. The first fact allows us to convert the randomized query algorithm doing the preprocessing to a
quantum query algorithm. But this quantum query algorithm could continue running if its output is not 1, and recall
a quantum query algorithm’s output always arises from a measurement. However, by the second fact, we can defer this
measurement to the end. The second fact also allows us to defer the measurements made in each of the repeat loops to
the end.

2. The exposition here expands a little on [Aaronson notes] – top of page 8.

3. A somewhat different algorithm, along the lines of what Nick suggested in class of exponentially increasing k from 1 to
O(
√
n), is analyzed in detail in Section 4 of [BBHT’96].

4. In fact, there’s yet another algorithm for computing ORn using a “fully quantum strategy” (i.e., very unlike the two
algorithms mentioned above that are essentially Grover + classical ideas) called “fixed-point amplitude amplification”.
See [Yoder, Low, Chuang’14]. Maybe we’ll have time to discuss this when we talk about quantum signal processing.

Proposition 5 (Error suppression/Chernoff bound). Let ε ∈ (0, 1/3). Let f : D ⊆ {0, 1, . . . ,m − 1}n → Γ. Then Rε(f) ≤
R(f)d18 ln(1/ε)e and Qε(f) ≤ Q(f)d18 ln(1/ε)e.

Proof. Will prove the randomized case. Same idea also works in the quantum case via the principle of deferred measurement.
Suppose T is an RDT that computes f with bounded error 1/3. Take k ∈ N copies of T and output the modal output of

the k copies. For a given x ∈ D, let X denote the number of copies that output the correct answer on x, the probability that
each copy outputs the correct answer is p = 1

2 + δ, where δ ≥ 1/6 and the probability that each copy outputs the incorrect
answer is q = 1− p = 1

2 − δ ≤ 1/3. Correct ⇐⇒ X > k/2. So probability of incorrect is

Pr[X ≤ k/2] =

k/2∑
i=0

Pr[X = i] =

k/2∑
i=0

(
k

i

)
piqk−i

≤
k/2∑
i=0

(
k

i

)
pk/2qk/2 ≤ 2k(pq)k/2

=2k
(1

2
+ δ
)k/2(1

2
− δ
)k/2

= 2k
(1

4
− δ2

)k/2
=(1− 4δ2)k/2 ≤ e−2kδ2 ∀x ≥ 0, 1− x ≤ e−x.

So if we pick k ≥ ln(1/ε)/(2δ2), we have Pr[X ≤ k/2] ≤ ε. Since δ ≥ 1/6, it suffices to pick k ≥ 18 ln(1/ε). Hence the
proposition.

Remark 5. We have shown that given k i.i.d. random variables X1, . . . , Xk taking values in {0, 1} such that ∃δ ∈ [0, 1/2],

∀i,Pr[Xi = 1] = 1
2 + δ. Then Pr[

∑k
i=1Xi ≤ k/2] ≤ e−2kδ2 . This type of bound is known as a Chernoff bound, there are

more sophisticated variants with more sophisticated proofs. The rough-and-ready proof given here is taken from [Nielsen
and Chuang], Box 3.4.

4The proof of this is similar to how we got the first “negligible” and the footnote about the first “negligible” also applies here.
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Lecture 5

The Turing model and its relation to the query model. In the Turing model, we typically consider decision problems
and the time complexity of solving them. Comment: everything in this class can be generalized to non-decision, aka “search”,
problems, but for convenience of notation, we’ll stick with decision problems. Time complexity in the Turing model matches
our normal intuition of how long it takes a problem to be solved. In this lecture, we will define time complexity formally and
see how it relates to query complexity in the quantum setting.

In the following, {0, 1}∗ is the set of all finite-length bitstrings, including the empty bitstring, denoted ε.

Definition 14. A decision problem is a function P : {0, 1}∗ → {0, 1}.

Remark 6.

1. This corresponds to the following “problem” in the colloquial sense: input y ∈ {0, 1}∗, problem is to output P(y).

2. For those who have taken complexity theory, a decision problem is equivalent to a language by the correspondence:

P ↔ L ⊆ {0, 1}∗; L := P−1(1). (59)

We will define deterministic, randomized, and quantum time-complexity of solving P via classical and quantum circuits.

Definition 15 (Classical and quantum circuits).

1. A classical (Boolean/bit) circuit is a directed acyclic graph with a ∈ N vertices labelled uniquely by 1, . . . , a that have
no incoming edges and at most one outgoing edge (“a input bits”) and b ∈ N vertices labelled uniquely by 1′, . . . , b′

that have no outgoing edges and exactly one incoming edge (“b output bits”), and all other vertices are labelled by
symbols from set

cGATES := {FANOUT,AND,OR,NOT}, (60)

such that vertices labelled AND and OR have two incoming edges and one outgoing edge, vertices labelled by FANOUT
have one incoming edge and two outgoing edges, and vertices labelled by NOT have one incoming edge and one outgoing
edge.

2. A quantum (Boolean/qubit) circuit is defined by the following data5:

(a) a ∈ N. (In this case, we say the quantum circuit “is on a qubits” or has “a input and output qubits”.)

(b) A finite sequence of elements each of the form (H, i), (T, j), or (Toffoli, (k1, k2, k3)), where i, j, k1, k2, k3 ∈ [a] and
k1, k2, k3 are distinct.

We also define the set of symbols
qGATES := {T,H,Toffoli}. (61)

Definition 16 (Computation using classical and quantum circuits.). A classical circuit with a input bits and b output bits
computes in the natural way with the natural interpretations of the symbols AND, OR, NOT as (Boolean logic) gates;
FANOUT is interpreted as the gate that takes an input bit and fans it out into two copies . Given y ∈ {0, 1}a, C(y) ∈ {0, 1}b
is defined in the natural way.

A quantum circuit C with a input and output qubits computes as follows. Given y ∈ {0, 1}a, C(y) is the random variable
on {0, 1}a defined by applying the finite sequence defining C on |y〉 ∈ C2a

in order, under the interpretation:

(H, i)→ 1
⊗i−1
2 ⊗ 1√

2

(
1 1
1 −1

)
⊗ 1⊗a−i2 , (T, j)→ 1

⊗j−1
2 ⊗

(
1 0
0 exp(iπ/4)

)
⊗ 1a−j2 ,

(Toffoli, (k1, k2, k3))→ unitary Toffolik1,k2,k3 defined by:

|α〉k1 |β〉k2 |γ〉k3 |w〉rest 7→ |α〉k1 |β〉k2 |γ ⊕ α · β〉k3 |w〉rest for all α, β, γ ∈ {0, 1}, w ∈ {0, 1}a−3, (62)

where the subscripts denote the position of the ket (e.g., when a = 5, |0〉2 |0〉3 |0〉5 |11〉rest means |10010〉). Then, measuring
using {Πz := |z〉〈z| | z ∈ {0, 1}a}.

5In class, I defined a quantum circuit analogously to a classical circuit, i.e., as a directed acyclic graph with non-input/output vertices labelled
by elements in qGATES. However, upon reflection, this definition is problematic when it comes to defining computation. In particular, this
definition makes the subsequent definition of computation not well-defined since the latter definition interprets Toffoli as a non-symmetric gate,
i.e., we don’t have Toffoli |x1x2x3〉 = |xσ(1)xσ(2)xσ(3)〉 for all x1, x2, x3 ∈ {0, 1}, σ ∈ S3 (S3 = set of permutations on 3 objects). The definition
given here follows Definition 6.1 of [Kitaev, Shen, Vyalyi].
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Remark 7. There are alternative definitions of classical and quantum circuits that use other gate sets. But the resulting
time-complexities don’t differ significantly – just like how the definition of Turing machine is rather robust to number of
tapes, size of alphabets, etc.

For example, often see qGATES = {T,H,CNOT}. But this only leads to “constant” complexity differences since 1 CNOT
can be simulated by 1 Toffoli gate and, conversely, 1 Toffoli can be simulated by 6 CNOT gates, 2 H gates and 25 T gates.

A classical circuit can be described in a canonical way by a string y ∈ ˜cGATES
∗
, where ˜cGATES = cGATES∪{0, 1,Blank}.

(For example, the 0, 1 can specify the location of the gates in binary, and Blank can indicate that we’ve finished specifying a

single gate.) Similarly, a quantum circuit can be described in a canonical way by a string y ∈ ˜qGATES
∗
, where ˜qGATES =

qGATES ∪ {0, 1,Blank}. In the following definition, the word “description” refers to a fixed cannonical description.
Comment: the quantum part of the following definition is taken from Definition 9.2 of [Kitaev, Shen, Vyalyi]. The

randomized and deterministic parts of this definition are written in a form to be similar to the quantum definition. These
definitions involve the notion of Turing machines, which have a formal definition, but if that’s unfamiliar, just think of it
as an algorithm/systematic procedure/computer program. I’m implicitly using the arbitrary but constant number of tapes
definition of [Arora-Barak] (Section 1.2), not the single-tape definition of [Sipser] (since these can give rise to quadratically
different time complexities, e.g., for PALINDROME, see [Kabanets notes]).

Definition 17 (Deterministic, randomized, and quantum time complexity for decision problems). Let T : N→ N and P be
a decision problem.

1. We say P can be solved in deterministic time T (“by a deterministic algorithm in time T”) if there exists a Turing
machine A that, for all N ∈ N, satisfies the following:

For all inputs y ∈ {0, 1}N , A runs in ≤ T (N) steps and outputs P(y).

2. We say P can be solved in randomized time T (“by a randomized algorithm in time T”) if there exists a (same-notion-
as-before) Turing machine A that, for all N ∈ N, satisfies the following:

For all inputs y ∈ {0, 1}N , A runs in ≤ T (N) steps and outputs the description of a classical circuit Cy taking a-bit
input and 1-bit output such that Pr[Cy(r) = P(y) | r ← {0, 1}a] ≥ 2/3.

3. We say P can be solved in quantum time T (“by a quantum algorithm in time T”) if there exists a (same-notion-as-
before) Turing machine that, for all N ∈ N, satisfies the following:

For all inputs y ∈ {0, 1}N , A runs in ≤ T (N) steps and outputs the description of a quantum circuit Cy on a qubits
such that Pr[Cy(0a)1 = P(y)] ≥ 2/3, where Cy(0a)1 denotes the first bit of the random variable Cy(0a).

Definition 18 (P, BQP, BPP). A decision problem P is said to be in

1. P if there exists c > 0 and T : N→ N with T (n) = O(nc) such that P can be solved in deterministic time T .

2. BPP if there exists c > 0 and T : N→ N with T (n) = O(nc) such that P can be solved in randomized time T .

3. BQP if there exists c > 0 and T : N→ N with T (n) = O(nc) such that P can be solved in quantum time T .

P stands for polynomial time, BPP stands for bounded-error probabilistic polynomial time, BQP stands for bounded-error
quantum polynomial time.

Relation between the query model and Turing model. The quantum query complexities of functions fn : {0, 1}n →
{0, 1}, where n ∈ N, can be used to upper bound the quantum time complexity of the decision problem P if there exists a
Turing machine A that for all N ∈ N and for all inputs y ∈ {0, 1}N to P, outputs

1. a natural number n = n(N) ∈ N (as a bitstring) and the description of a classical circuit for some function x : [n] →
{0, 1} such that fn(x) = P(y) in ≤ τ(N) steps. (Note that x is a function but can be identified with a bistring in the
natural way, and so can serve as input to fn.)

2. the description of quantum circuits that (approximately) equal Ui in ≤ τi(N) steps for all i ∈ {0, 1, . . . , Q(n)}, where
Q(n) is the quantum query complexity of fn and the Uis are the Q(n) + 1 unitaries that specify a quantum query
algorithm for fn of minimum depth.

In this case, P can be solved in quantum time T : N→ N such that

T (N) = O
(
τ(N) ·Q(n(N)) +

d∑
i=0

τi(N)
)
. (63)
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Proof sketch. The quantum query algorithm can be thought of as an abstract quantum circuit (recall the diagram we drew
in class). But using A, we can convert that abstract quantum circuit into a bonafide quantum circuit with gates in qGATES:

1. For each Ui, the conversion takes ≤ τi(N) steps.

2. For the quantum oracle of x, Ox, A outputs the description Dx of a classical circuit for x : [n]→ {0, 1} in ≤ τ(N) steps
but it is a fact that there’s another Turing machine that can convert Dx to a description of a quantum circuit for Ox
in a number of steps that’s linear in the length of Dx. Comment: this is a non-trivial fact, see the next lecture.

But the length of Dx is O(τ(N)). So converting each Ox to its quantum circuit takes O(τ(N)) steps. Since the
quantum query algorithm uses Q(n(N)) Oxs, the total number of steps to convert all of them to their quantum circuits
is O(τ(N) ·Q(n(N))).

Adding the number of steps in the two cases together gives Eq. (63).

Remark 8. One way to think of the proof is that a quantum query algorithm serves as a template for a quantum circuit.
To get the associated time complexity requires us to fill in that template.

Comment: this will hopefully make more sense when we discuss kSAT.
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Lecture 6

Fact 2 (Quantum oracle instantiation.). Let ˜cGATES and ˜qGATES be as above. There is a Turing machine that does the
following:

1. Input: a description y ∈ ˜cGATES
∗

of a classical circuit computing the function x : [n]→ {0, 1, . . . ,m− 1}.

2. Output: a description y′ ∈ ˜qGATES
∗

of a quantum circuit computing the quantum oracle, Ox of x. (Recall Ox ∈
Cnm×nm maps |i〉 |j〉 7→ |i〉 |j + xi+1 mod m〉.)

Moreover, the Turing machine runs in time O(length(y)).

Proof. See Section 1.4.1 of [Nielsen and Chuang] or [Watrous video starting at 45:37].

It follows immediately from this fact that BPP ⊆ BQP. (P ⊆ BPP is obvious.)

kSAT, the Strong Exponential-Time Hypothesis (SETH), and quantum time complexity. Let k ∈ N, the kSAT
decision problem is defined as follows.

Input: A Boolean formula y in Conjunctive Normal Form of width k in l Boolean variables having m clauses. (y can
be represented as a string in {0, 1}N under a suitable encoding.) This means the input describes an AND of m clauses,
where each clause is an OR of ≤ k variables or their negations.

Example: Input in the case k = 3, l = 5, m = 4:

y = (u1 ∨ ¬u4 ∨ u3) ∧ (u5 ∨ ¬u2 ∨ ¬u3) ∧ (¬u5 ∨ u4 ∨ u3) ∧ (u1 ∨ ¬u2), (64)

where u1, . . . , u5 ∈ {0, 1} are the variables.
Problem: decide if y is satisfiable, i.e., output 1 if there exists u ∈ {0, 1}l such that y evaluated on u is equal to 1
Example: yes since F = 1 if we set u1, u4, u5 = 1 and u2, u3 to be arbitrary, say 1.

Conjecture 1 (Strong Exponential Time Hypothesis). SETH conjectures that for every ε > 0, there exists k ∈ N such that
no O(2(1−ε)l poly(m, l))-time randomized algorithm solves kSAT.

Obviously, for each k ∈ N, there is a deterministic algorithm that runs in time O(2l poly(m, l)). Less trivially:

1. For each k ∈ N, there is a randomized algorithm for that runs in time O(2l(1−1/k) poly(m, l)).

2. For k = 2, there is a deterministic algorithm that runs in time O(poly(m, l)).

SETH is generally believed to be true. If SETH is indeed true, then there is a definitive (quadratic) quantum advantage
for kSAT for large k due to the next proposition.

Proposition 6. For any k ∈ N, kSAT can be solved by a quantum algorithm in time O(
√

2l poly(m, l)).

Proof sketch. From the definitions, we need to give a classical algorithm that takes the input Boolean formula y and outputs
the description of a quantum circuit CN,y that can decide whether y is satisfiable.

Observe that y already describes a classical circuit computing the function

x : {0, 1}l → {0, 1}, (65)

such that x(u1, . . . , ul) is equal to y evaluated on u1, . . . , ul.
Therefore, by the fact on quantum oracle instantiation, there is an algorithm that outputs the description of a quantum

circuit computing the quantum oracle, Ox of x in time O(length(y)) = O(poly(m, l)).
Viewing x as a 2l-bit string, it suffices for CN,y to compute OR2l(x) since this equals whether or not y is satisfied.

But we can use Grover’s algorithm for this which uses O(
√

2l) calls to Ox. Each Ox now has an explicit description as
a quantum circuit that takes time O(poly(m, l)) to generate. Moreover, the other non-Ox unitaries used in Grover’s query

algorithm can be described in time O(poly(m, l)) (see Homework 2). So the total time is O(
√

2l poly(m, l)).

Back to query complexity! Interesting applications of Grover search, or how to combine Grover with classical algorithmic
ideas.
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The collision problem. Let n ∈ N be even. The function in this case is

Collisionn : D0∪̇D1 ⊆ {0, 1, . . . , n− 1}n → {0, 1}, (66)

where

D0 :={x ∈ {0, 1, . . . , n− 1}n | ∀i, j ∈ [n], i 6= j =⇒ xi 6= xj}, (67)

D1 :={x ∈ {0, 1, . . . , n− 1}n | ∀i ∈ [n],∃!j ∈ [n] s.t. xj = xi and j 6= i}, (68)

and Collisionn(x) = 1 if and only if x ∈ D1.
Example n = 6, then

301245 ∈ D0 and 313155 ∈ D1. (69)

Note x ∈ {0, 1, . . . , n− 1}n can be naturally identified with a function x̃ : [n]→ {0, 1, . . . , n− 1} such that x̃(i) = xi. Abuse
notation and write x̃ also as x. Then x ∈ D1 means x is a two-to-one function.

Proposition 7. R(Collisionn) = O(
√
n) and Q(Collisionn) = O(n1/3).

Remark 9. In fact, these bounds are tight. We will prove an even stronger randomized lower bound when we discuss Simon’s
problem. Proving the quantum lower bound is non-trivial (may do later in the course).

Proof.

1. Randomized query algorithm for computing Collisionn.

Note that the following description can be formally phrased in terms of a distribution over decision trees (how?). Given
input x ∈ D0∪̇D1:

Sample a uniformly random subset {i1, . . . , ik} ⊂ [n] of size k. Query xi1 , . . . , xik , if there is a collision, i.e., ia 6= ib
with a, b ∈ [k], such that xia = xib , then output 1, else output 0.

How large of a k ≤ n/2 do we need to pick? (Note if k > n/2, guaranteed to find a collision.) If x ∈ D0, then will
never observe a collision, so always correct in this case. So the probability of error is the probability that no collision
is observed if x ∈ D1.

n(n− 2)(n− 4) . . . (n− 2k)/k!(
n
k

) =1 ·
(

1− 1

n− 1

)
·
(

1− 2

n− 2

)
. . .
(

1− k

n− k + 1

)
≤ exp

(
−
m−1∑
i=1

i

n− i

)
≤ exp

(
−
m−1∑
i=1

i

n

)
= exp

(
−k(k − 1)

2n

)
≤ exp

(
− (m− 1)2

2n

)
.

Therefore the probability of error is ≤ ε if

exp
(
− (k − 1)2

2n

)
≤ ε ⇐⇒ N ≥

√
2n ln(1/ε) + 1. (70)

Therefore, Rε(Collisionn) ≤ min(
√

2n ln(1/ε) + 1, n/2).

2. Quantum query algorithm for computing Collisionn.

Let k ∈ N be such that k ≤ n/2. On input x ∈ D0∪̇D1:

(a) Classically query x1, . . . xk.

(b) If there is a collision, then done. If there is not a collision, quantumly search for the k distinct symbols among the
remaining n− k symbols.

This is essentially the same as computing OR0,k
n−k because can use Ox twice, where x is an input to Collisionn,

to instantiate a query to an input to OR0,k
n−k. Let F : {0, 1, . . . , n − 1} → {0, 1} be defined by F (s) = 1[s ∈

{x1, . . . , xk}]. Then for i ∈ {k, . . . , n− 1} and b ∈ {0, 1},

|i〉 |0〉 |b〉 Ox[1,2]7→ |i〉 |xi+1 mod n〉 |b〉
UF [2,3]7→ |i〉 |xi+1 mod n〉 |b⊕ 1[xi+1 ∈ {x1, . . . , xk}]〉
O†x[1,2]7→ |i〉 |0〉 |b⊕ 1[xi+1 ∈ {x1, . . . , xk}]〉 .

(71)

Instantiating O†x using Ox ∈ Cn2×n2

: let negn ∈ Cn×n be defined by |j〉 7→ |−j mod n〉.

|i〉 |j〉 negn[2]7→ |i〉 |−j mod n〉 Ox7→ |i〉 |−j + xi+1 mod n〉 negn[2]7→ |i〉 |j − xi+1 mod n〉 . (72)

The number of queries in the second step is O(
√

(n− k)/k) = O(
√
n/k).
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Overall query complexity is O(k +
√
n/k) which is minimized at k = n1/3.

Comment: optional material on time complexity, QRAM, and RAM. The relevance of the quantum query algorithm for
collision to the real world (i.e., in the Turing model) is less clear than Grover’s query algorithm. The reason is due to concerns
about the time-efficiency of describing the circuit for F . Often researchers side-step the issue by working in the “Quantum
Random Access Memory” (QRAM) model, which implies that the circuit for F can be described in O(log(k)) time. Then,
also assuming the circuit for x : [n]→ {0, 1, . . . , n− 1} can be described in O(log(n)) time, the quantum query algorithm can
be described as a bonafide quantum circuit in O(k log(n) +

√
n/k(log(n) + log(k))) ≈ O(n1/3) time, again taking k = n1/3.

Working in the QRAM model means that we effectively assume:

QRAM assumption. For all N ∈ N, a quantum circuit for the unitary QRAMN ∈ CN ⊗ C2N

defined by

QRAMN |i〉 |b〉 |x〉 = |i〉 |b⊕ xi+1〉 |x〉 (73)

for all i ∈ {0, 1, . . . , N − 1}, b ∈ {0, 1}, and x ∈ {0, 1}N can be described in O(log(N)) steps.

What if we don’t assume QRAM? Still assume that the time needed to describe a quantum circuit for Ox is O(log(n)).
The query algorithm is making

√
n/k calls to UF . The circuit for F can be described in time roughly O(k): the circuit simply

compares the input s with each of x1, . . . , xk. So the quantum circuit for UF can be described in time O(k). Then the time
taken to descibe the Grover search circuit would be O(k log(n)

√
n/k) so the overall time complexity is O((k +

√
nk) log(n))

which is minimized at k = 1 and gives ≈ O(
√
n) – same as classical.

The QRAM model is supposed to be a quantum analogue of the RAM model, and frequently authors cite [Giovannetti,
Lloyd, and Maccone’08] to justify the assumption. However, whether the assumption is justified is highly controversial, see,
e.g., [Jaques and Rattew’23]. The assumption is provably false in the standard Turing model: QRAMN provably requires
Ω(N) gates to implement in terms of gates in qGATES (and therefore requires Ω(N) time to describe in terms of gates in
qGATES).

Working in the RAM model means that we effectively assume:

RAM assumption. For all N ∈ N, a classical circuit for the gate RAMN that takes input x ∈ {0, 1}N and i ∈ [N ],
and outputs xi can be described in O(log(N)) steps.

The RAM assumption is also provably false in the standard Turing model since the number of gates in cGATES needed to
describe RAMN is Ω(N). The RAMN gate models a “RAM device” (outside the Turing model) that can process an input N -
bit string x in O(log(N)) steps to produce a random access memory for x that allows for reading xi for arbitrary (“random”)
i in a unit time step – the word “random” is really a misnomer since there’s no probability distribution involved here.
Proponents of QRAM argue that “if RAM is reasonable, then so is QRAM, and RAM is generally regarded as reasonable”.
However, it is not clear how to engineer a QRAM device out of a RAM device – see [Jaques and Rattew’23] for a discussion.
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Lecture 7

Directed st-connectivity in the hypercube. The quantum query algorithm we’ll discuss this lecture translates to a
quantum algorithm for the travelling salesman problem. Based on [ABIKPV’18].

A hypercube is a graph with 2n vertices labelled by n-bit strings {0, 1}n. There is an edge between two vertices u, v ∈
{0, 1}n iff u and v differ in a single bit (alternatively, |u⊕ v| = 1, where | · | denotes Hamming weight). This is written u ∼ v.

The number of edges is m := n2n/2. Therefore, {0, 1}m bijects with the set of subgraphs of the hypercube graph. We
will identity these two sets. The query problem is defined by

Hypercuben : {0, 1}m → {0, 1}, f(x) = 1 iff 0n and 1n is connected by a directed path in x. (74)

Here, a directed path means: a sequence 0n = u0, u1, . . . , un = 1n such that |ui| = i and ui ∼ ui+1.
Some obvious ideas that don’t work:

1. Grover search over all possible directed paths. n! paths. Each path takes O(
√
n) queries to verify presence. So overall

O(
√
n!n) = O∗(

√
n!), where O∗ suppresses factors polynomial in n. But n! ≈

√
2πn(n/e)n (Stirling’s approximation)

so
√
n! ≥ (n/3)n/2 which is much larger than the trivial bound n2n/2 for large n.

2. Given a vertex v with Hamming weight n/2, can decide if it is connected to 0n using O∗(2n/2) queries (there are
O∗(2n/2) edges that could possibly be part of a path connecting 0n to v, classically query them all). Similarly can
decide if it is connected to 1n using O∗(2n/2) queries. So can decide if there’s a directed path from 0n to 1n via v using

O∗(2n/2) queries. Now, Grover search over all v costs O∗(
√

2n/2
√

2n/2) = O∗(2n), better than the first strategy but
essentially same as the trivial bound.

Lemma 2. Let n ∈ N. Then

∀k ∈ N, 1 ≤ k ≤ n/2,
(
n

≤ k

)
:=

k∑
i=0

(
n

i

)
≤ 2h(k/n)n, (75)

∀l ∈ N, 1 ≤ l ≤ n,
(
n

l

)
≤ 2h(l/n)n, (76)

where h : [0, 1]→ [0, 1] denotes the binary entropy function h(p) := −p log2(p)− (1− p) log2(1− p).

Proposition 8. Q(Hypercuben) = O∗(20.9693n).

Let α ∈ [0, 1/2], will set α later.

1. Classically query all edges between Hamming weight [0, αn] and [(1− α)n, n]. Cost is O∗(2h(α)n).

2. Given a vertex v with Hamming weight n/2 and u with Hamming weight αn, can decide if v is connected to u layer
using O∗(2(1/2−α)n) queries. So can decide if v is connected to 0n by searching over those u ≤ v such that u is

connected to 0n, which costs O∗(2(1/2−α)n
√(

n/2
αn

)
) queries. (Note that we know which us are connected to 0n from

the first part.) Similarly, this is also the cost of deciding if v is connected to 1n. Then Grover search over all v costs

O∗(2(1/2−α)n
√(

n/2
αn

)√(
n
n/2

)
).

The overall query complexity is of O∗:

2h(α)n + 2(1/2−α)n

√(
n/2

αn

)√(
n

n/2

)

≤2h(α)n + 2(1/2−α)n

√(
n/2

αn

)√(
n

n/2

)
≤2h(α)n + 2(1/2−α+h(2α)/2+1/2)n

≤2 · 2max(h(α),(1/2−α+h(2α)/2+1/2))n

(77)

The exponent is minimized by setting α = 0.397201... which gives an upper bound of O∗(20.9693n). (See Fig. 1.)

Remark 10. Can analyze more layers and get O∗(20.8615n). The best known lower bound is Ω∗(2n/2) it is a 5-year-old open
question to improve either the lower bound or the upper bound. Another similar open question concerns the directed 2D
n× n grid: best known upper bound is O(n2) (trivial), best known lower bound is Ω(n1.5) – see [ABIKKPSSV’20].
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Figure 1: Minimizing the exponent in the quantum query complexity of directed st-connectivity in the hypercube. The
minimum is achieved where the two lines cross.
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Lecture 8

Simon’s problem. Let n, k ∈ N be such that n = 2k. So that {0, 1, . . . , n− 1}n bijects with {0, 1, . . . , n− 1}{0,1}k and be
identified under a fixed bijection. In the following, we will switch between these two notations.

Simonn : D := D0∪̇D1 ⊆ {0, 1, . . . , n− 1}n → {0, 1}, (78)

where

D0 :={x ∈ {0, 1, . . . , n− 1}{0,1}
k

| ∀s, t ∈ {0, 1}k, s 6= t =⇒ x(s) 6= x(t)}, (79)

D1 :={x ∈ {0, 1, . . . , n− 1}{0,1}
k

| ∃a ∈ {0, 1}k − {0k},∀s, t ∈ {0, 1}k, x(s) = x(t) ⇐⇒ s ∈ {t, t⊕ a}}, (80)

and Simonn(x) = 0 ⇐⇒ x ∈ D0.

Proposition 9. Q(Simonn) = O(log(n)).

We need some lemmas.

Lemma 3. Let x ∈ {0, 1}k and |x〉 = |x1〉 . . . |xk〉 be a k-qubit state. Let H⊗k := H ⊗ · · · ⊗H (k times). Then

H⊗k |x〉 =
1√
2k

∑
y∈{0,1}k

(−1)x·y |y〉 . (81)

Proof. We have

H⊗k |x〉 =H |x1〉 ⊗ · · · ⊗H |xn〉

=
1√
2

(|0〉+ (−1)x1 |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ (−1)x1 |1〉) Eq. (31) (Phase kickback)

=
1√
2k

∑
y1,...,yk∈{0,1}

(−1)x1y1+···+xkyk |y1〉 |y2〉 . . . |yk〉 think about phase for fixed y

=
1√
2k

∑
y∈{0,1}k

(−1)x·y |y〉 ,

as required.

Lemma 4. Let K ∈ N. Suppose z1, . . . , zK ← Fk2 . Then the probability that the dimension of the span of the zis, i.e., the
dimension of the subspace

V := {a1z1 + · · ·+ aKzK | a1, . . . , aK ∈ F2} ≤ Fk2 (82)

is k is at least 1− 2k−K .

Based on [StackExchange post].

Proof. Let A ∈ FK×k2 denote the matrix whose rows are the zis. The dimension of V is the same as the row-rank (dimension
of the span of the rows) of A, which is equal to the column-rank of A by a standard fact in linear algebra. Now, the
column-rank of A is k if and only if the kernel of A is {0} by the rank-nullity theorem, where the kernel of A is defined by

ker(A) := {x ∈ Fk2 | Ax = 0}. (83)

Since the zis are chosen uniformly from Fk2 , A is a uniformly random matrix in FK×k2 . In the following, the probability
is over A← FK×k2 .

Pr[ker(A) 6= {0}] = Pr[∃x ∈ Fk2 , x 6= 0, Ax = 0] definition

≤
∑

x∈Fk
2 ,x 6=0

Pr[Ax = 0] union bound

=(2k − 1)
1

2K
Ax is unif. random in FK2 , e.g., suppose xK = 1

≤ 2k

2K
.

Therefore Pr[dim(V ) = k] = Pr[ker(A) = {0}] ≥ 1− 2k−K .
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Lemma 5. Let K ∈ N and 0 6= a ∈ Fk2 . Let z1, . . . , zK ∈ Fk2 (arbitrary) be such that ∀i ∈ [K], a · zi = 0. Then the dimension
of the span of the zis is at most k − 1.

Proof. It suffices to prove that the dimension of the following subspace is k − 1:

U := {z ∈ Fk2 | a · z = 0}. (84)

Note that U is the kernel of the 1× k matrix A := (a1, . . . , ak). Now, the column-rank of A is 1 since a 6= 0. Therefore, by
the rank-nullity theorem, dim(U) = k − 1.

With the lemmas in place, we can now prove Proposition 9.

Proof of Proposition 9. Create the state using 1 query to x ∈ D:

1√
2k

∑
s∈{0,1}k

|s〉 |x(s)〉 . (85)

Measure the second register in the computational basis. There are two cases depending on whether x ∈ D0 or x ∈ D1.

1. x ∈ D0. Obtain a value y0 ∈ {0, 1, . . . , n− 1} (with probability 1/2n but the precise value doesn’t matter for the later
analysis) and the state becomes

|s0〉 |y0〉 , (86)

where x(s0) = y0.

2. x ∈ D1. Obtain a value y0 ∈ x({0, 1}k) (with probability 2/n – note |x({0, 1}k)| = n/2) and the state becomes

1√
2

(|s0〉+ |s0 ⊕ a〉) |y0〉 , (87)

where x(s0) = y0.

Now apply H⊗k to the first register. Then measure the first register in the computational basis. (Will ignore the second
register for notational convenience since it just stays |y0〉.) Analyze two cases x ∈ D0 and x ∈ D1 separately:

1. x ∈ D0. After applying H⊗k:
1√
2k

∑
z∈{0,1}k

(−1)s0·y |z〉 . (88)

After measurement in the computational basis: obtain z ∈ {0, 1}k uniformly at random.

2. x ∈ D1. After applying H⊗k:

1√
2k

∑
y∈{0,1}k

((−1)s0·z + (−1)(s0⊕a)·z) |z〉 =
1√
2k

∑
z∈{0,1}k

(−1)s0·y(1 + (−1)a·z) |z〉 . (89)

After measurement in the computational basis: obtain z ∈ {0, 1}k such that a · z = 0 mod 2 with probability 2/2k.
(Note that there are 2k−1 zs satisfying a · z = 0.)

Repeat the entirety of the above K times and output 0 if and only if

d := dimension of the span of the K zs obtained (viewed as vectors in Fk2) = k. (90)

Analyze two cases x ∈ D0 and x ∈ D1 separately:

1. x ∈ D0. By Lemma 4: with probability at least 1−2k−K , d = k. Therefore the probability of the output being correct,
i.e., 0, is at least 1− 2k−K .

2. x ∈ D1. By Lemma 5: d ≤ k − 1. Therefore, the output is always correct, i.e., equal to 1.

So if we take K ≥ k + 2, then, for all x ∈ D, the probability of being correct is at least 2/3.
Since each repeat costs only 1 query. The overall query complexity is K = k + 2 = O(log(n)), as required.
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Remark 11. In the case x ∈ D1, a slight modification of the algorithm above can also recover a: choose K large enough (how
large?) such that in the case x ∈ D1, we have d = k−1 whp; collect the k−1 linearly independent vectors z(1), . . . z(k−1) ∈ Fk2
into the rows of a matrix A ∈ F(k−1)×k

2 and compute the kernel of A, which will have size 2. a is the non-zero element.

Moreover, note that, since n = 2k, we can identify {0, 1, . . . , n− 1}n with {0, 1, . . . , n− 1}Fk
2 .

Therefore, we also have an O(log(n)) quantum algorithm for the following query problem:

Simon′n : D′ ⊆ {0, 1, . . . , n− 1}F
k
2 → Fk2 (91)

where x ∈ D′ if and only if there exists an a ∈ Fk2 − {0k} such that ∀s, t ∈ Fk2 , x(s) = x(t) ⇐⇒ s ∈ {t, t + a} (addition as
defined in the group Zk2 , i.e., component-wise addition), and Simon′n(x) outputs the a (period) associated with x. (Writing
it this way is to allow for direct comparison with the order finding problem at the heart of Shor’s algorithm later.)
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Lecture 9

Proposition 10. R(Simonn) = Ω(
√
n).

We will need the following lemma.

Lemma 6. Let f, T : D := D0∪̇D1 ⊆ Σn → {0, 1}. Let f(D0) = {0} and f(D1) = {1}. Suppose µ0 is a distribution on D0

and µ1 is a distribution on D1. Let µ denote the distribution on D such that x ← µ is defined by b ← {0, 1} and x ← µb.
Let P1 ⊆ D1. Suppose that for all b ∈ {0, 1},

Pr[T (x) = b | x← µ0] = Pr[T (x) = b | x ∈ P1, x← µ1]. (92)

Then

Pr[T (x) = f(x) | x← µ] ≤ 1

2
+

1

2
Pr[x /∈ P1 | x← µ1]. (93)

Proof.

Pr[T (x) = f(x) | x← µ]

=
1

2
Pr[T (x) = 0 | x← µ0] +

1

2
Pr[T (x) = 1 | x← µ1] definition of µ

=
1

2
Pr[T (x) = 0 | x← µ0] +

1

2
(Pr[T (x) = 1 | x ∈ P1, x← µ1] Pr[x ∈ P1 | x← µ1]

+
1

2
Pr[T (x) = 1 | x /∈ P1, x← µ1] Pr[x /∈ P1 | x← µ1]) law of total probability

≤1

2
Pr[T (x) = 0 | x← µ0] +

1

2
Pr[T (x) = 1 | x← µ0] +

1

2
Pr[x /∈ P1 | x← µ1] by lemma condition

=
1

2
+

1

2
Pr[x /∈ P1 | x← µ1],

as required.

Comment: apply this lemma to f = Simonn and T the (function induced by the) decision tree.

Proof of Proposition 10. (A more rigorous version of [de Wolf notes].) By the averaging argument/easy direction of Yao’s
principle (i.e., the arguments we used at the beginning of the randomized lower bound proof for ORn), it suffices to show the
following. There exists a distribution µ over D such that if a DDT T satisfies

Pr[T (x) = Simonn(x) | x← µ] ≥ 2/3, (94)

then the depth d of T is at least Ω(
√
n).

We assume without loss of generality (wlog) that

1. T never queries x at the same index twice, i.e., in all paths from root to leaf, the labels of the nodes are distinct.

2. T is balanced, i.e., every root-to-leaf path is length d.

This is wlog since any T without these properties can be simulated by another DDT with these two properties of no greater
depth.

To define µ, we first define two distributions µ0 and µ1 on D0 and D1 respectively by the following sampling procedures.
Then we define x← µ by b← {0, 1} and x← µb.

1. Definition of x← µ0. For each s ∈ {0, 1}k, pick a distinct value in {0, 1, . . . , n− 1} for x(s) uniformly at random. (So
x is a uniformly random permutation of {0, 1, . . . , n− 1}.)

2. Definition of x ← µ1. Pick a ← {0, 1}k − {0k}, then for each set {s, s⊕ a}, where s ∈ {0, 1}k, pick a distinct value in
{0, 1, . . . , n − 1} for x(s) = x(s ⊕ a) uniformly at random. Comment: the distribution defined is independent of how
the “for each” loop is ordered.

Case x← µ0. The sequence of d responses to the d queries T makes is a uniformly random sequence of d distinct elements
in {0, 1, . . . , n− 1}.

Case x ← µ1. Let t ∈ {1, . . . , d}. Let v1, . . . , vt−1 ∈ {0, 1, . . . , n − 1} be distinct. Let s1, . . . st denote the sequence of
indices that T queries on x given x(s1) = v1, . . . , x(st−1) = vt−1. (Note s1, . . . , st are uniquely defined, in particular, s1 is the
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label of the root of T .) Say the sequence x(s1), . . . , x(st) is good if all its values are all distinct. Writing Pr for probability
over x← µ1, we have

Pr[x(s1), . . . , x(st) is good | x(s1) = v1, . . . , x(st−1) = vt−1]

= Pr[x(st) /∈ {x(s1) = v1, . . . , x(st−1) = vt−1} | x(s1) = v1, . . . , x(st−1) = vt−1]

= Pr[a(x) /∈ {s1 ⊕ st, . . . , st−1 ⊕ st} | x(s1) = v1, . . . , x(st−1) = vt−1] a(x) = the a corresp. to x

Comment: the point of conditioning like this is to explicitly see that st is fixed and not a function of x; without such
conditioning, the queried indices are generally functions of x and we would need to argue why, e.g., we can’t have s1 = 0k

and st = a(x), so that a(x) is always in {s1 ⊕ st}. This is why I have chosen to be more rigorous here than [de Wolf notes].
Since the vis are distinct, conditioning on x(s1) = v1, . . . , x(st−1) = vt−1 implies that a(x) cannot belong to {si ⊕ sj |

i, j ∈ [t − 1], i 6= j} ∪ {0k} but can take any other value. Since a is initially chosen uniformly from {0, 1}k − {0k}, a(x) is
uniformly distributed over the set of other values, i.e.,

{0, 1}k − {0k} − {si ⊕ sj | i, j ∈ [t− 1], i 6= j}, (95)

which has at least 2k − 1−
(
t−1

2

)
elements. Therefore, by the union bound,

Pr[a(x) /∈ {s1 ⊕ st, . . . , st−1 ⊕ st} | x(s1) = v1, . . . , x(sk−1) = vk−1] ≥ 1− t− 1

2k − 1−
(
t−1

2

) . (96)

Write x is t-good if the responses to the first t queries T makes on x are distinct. Then, since the above analysis holds
for all distinct v1, . . . , vt−1, we have

Pr[x is t-good | x is (t− 1)-good] ≥ 1− t− 1

2k − 1−
(
t−1

2

) , (97)

using the fact that Pr[A | ∪̇iBi] ≥ mini Pr[A | Bi].
Therefore, since the last inequality holds for all t ∈ {1, . . . , d},

Pr[x is d-good] ≥
d∏
t=1

(
1− t− 1

2k − 1−
(
t−1

2

))
≥1−

d∑
t=1

t− 1

2k − 1−
(
t−1

2

) ∀a, b ∈ [0, 1], (1− a)(1− b) ≥ 1− a− b.

Assume wlog that d is such that 1 +
(
d−1

2

)
≤ 2k/2 (else we’re done) so

Pr[x is d-good] ≥ 1− 2

2k
1

2
d(d− 1) ≥ 1− d2

2k
. (98)

Conditioned on the event that x is d-good, the sequence of d responses to the d queries T makes is a uniformly random
sequence of d distinct elements in {0, 1, . . . , n − 1}, as in the case x ← µ0. Comment: this is intuitively clear from the
definition of µ1 but can also verify this by computing a product of conditional probabilities.

Therefore, if we let P1 := {x ∈ D1 | x is d-good}, then for all b ∈ {0, 1},

Pr[T (x) = b | x← µ0] = Pr[T (x) = b | x ∈ P1, x← µ1]. (99)

Finally, we apply Lemma 6 to find that

Pr[T (x) = Simonn(x) | x← µ] ≤ 1

2
+

1

2

d2

2k
. (100)

Therefore, we must have d ≥
√

2k/3 = Ω(
√
n), as required.

Remark 12. The D0 of Simonn is the same as the D0 of Collisionn (when n is a power of 2). On the other hand, the D1

of Simonn is a subset of D1 of Collisionn. Therefore, any randomized decision tree that computes Collisionn (with bounded-
error 1/3) can also be used to compute Simonn (with bounded-error 1/3). Therefore R(Collisionn) ≥ R(Simonn). Therefore
O(
√
n) ≥ R(Collisionn) ≥ R(Simonn) ≥ Ω(

√
n), where the first inequality is from a few lectures ago and the last inequality

is what we just proved. So R(Simonn), R(Collisionn) = Θ(
√
n).
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Lecture 10-11

Period finding in Z. Also known as the Hidden Subgroup Problem (HSP) over Z.
Comment: the following description of Shor’s algorithm follows the exposition in Section 3.3 of [Jozsa notes] which explains

[Shor’95]. This is so that the similarity of the analysis of the query problem underlying Shor’s algorithm, PeriodN below, to
the analysis of Simon’s problem is self-evident. Indeed, Shor was directly inspired by Simon’s algorithm when he came up
with his algorithm: see [video]. The exposition here differs from that of, e.g., [Nielsen and Chuang], which explains Kitaev’s
variant of Shor’s algorithm.

We study the following query problem.

PeriodN : D ⊂ (ZN )Z → {1, . . . , N}, (101)

where x ∈ D if and only if there exists r ∈ N such that

x(s) = x(t) ⇐⇒ s− t ∈ rZ := {rz | z ∈ Z}. (102)

Comment: in the language of the HSP, the ambient group of this problem is Z and the hidden subgroup is rZ.
Observe that for a given x ∈ D, the “r” associated with it is unique and we denote it by per(x) (called “period of

x”). (Proof: suppose both r, r′ ∈ N are associated with x, then x(0) = x(r) = x(r′) =⇒ r − r′ ∈ rZ ∩ r′Z =⇒
r|(r − r′) and r′|(r − r′) =⇒ r|r′, r′|r =⇒ r = ±r′ =⇒ r = r′ as r, r′ ∈ N.)

This does not technically fall into the query problem setup since the input x can be queried at an infinite number of
points in Z but the algorithm we describe will only query x at points in {0, . . . , 2n − 1} for n := d2 log2(N)e+ 1.

The quantum algorithm uses the Quantum Fourier Transform.

Definition 19 (Quantum Fourier Transform). For M ∈ N, the quantum Fourier transform on CM is the unitary QFTM ∈
CM×M defined by

QFTM |j〉 =
1√
M

M−1∑
k=0

ωjkM |k〉 , (103)

for all j ∈ {0, 1 . . . ,M − 1}, where wM := exp(2πi/M). Comment: exercise: check that it is unitary.

Lemma 7 (Coprimality lemma). Let r ∈ N such that r ≥ 100. The number of elements in {0, 1, . . . , r− 1} that are coprime
to r (i.e., ∀d ∈ N, d|j, d|r =⇒ d = 1), denoted φ(r) (Euler’s totient function), satisfies

φ(r) ≥ r

5 ln ln(r)
, (104)

where ln is the natural logarithm.

Remark 13. There’s a more refined estimate: for r ∈ N, r ≥ 3, we have

φ(r) ≥ r

eγ ln ln(r) + 3
ln ln(r)

, (105)

where eγ ∈ [1.7810, 1.7812].

Proposition 11. Q(PeriodN ) = O(log log(N)).

Proof. Given input x ∈ D, let r := per(x). Assume wlog N ≥ 100 as the claimed result is asymptotic. Assume wlog r ≥ 100,
else r will be found by classically querying x(0), . . . , x(99). Observe that we must have r ≤ N .

Let n := d2 log2(N)e+ 1 so that 2n > N2 and write

2n − 1 = Br + b, (106)

in quotient remainder form, so that B ∈ {0, 1, . . . } and 0 ≤ b < r.
Comment: a lot of the technical complications of this proof can be avoided if we assume r|2n, as explained in Lecture 11.

(The assumption is invalid in general.)
Create the state

1√
2n

2n−1∑
s=0

|s〉 |x(s)〉 . (107)

Measure the second register. Then the state of the first register becomes

1√
A+ 1

A∑
k=0

|s0 + kr〉 , (108)
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for some s0 ∈ {0, 1, . . . , r − 1}, where A = B if s0 ≤ b and A = B − 1 if s0 > b.
Now we apply QFT2n to Eq. (108) to obtain

1√
2n(A+ 1)

2n−1∑
y=0

A∑
k=0

ω(s0+kr)y |y〉 =
1√

2n(A+ 1)

2n−1∑
y=0

ωs0y
( A∑
k=0

ωkry
)
|y〉 , (109)

where ω := ω2n .
We analyze the sum in brackets:

1 + ωry + · · ·+ ωAry. (110)

For j ∈ {0, 1, . . . , r − 1}, let yj ∈ {0, 1, . . . , 2n − 1} be the closest integer to j2n/r (if there’s a tie, let yj be the smaller),
so that ∣∣∣yj − j 2n

r

∣∣∣ ≤ 1

2
. (111)

Note that the yjs defined this way must be distinct since 2n/r > N2/N = N ≥ 100. Comment: if r|2n, then yj would just
exactly equal j2n/r.

Then, we have ∣∣∣ryj
2n
− j
∣∣∣ ≤ 1

2

r

2n
. (112)

and so we can write
ryj
2n

= j + ηj , (113)

where |ηj | ≤ r/2n+1 < N/(2N2) = 1/(2N). Then

Sj :=

A∑
k=0

ωkryj =

A∑
k=0

exp(2πi · kryj/2n) =

A∑
k=0

exp(2πi · kηj). (114)

Two cases:

1. ηj = 0. Then Sj = A+ 1.

2. ηj 6= 0. Then

|Sj |2 =
∣∣∣1− exp(2πi · (A+ 1)ηj)

1− exp(2πi · ηj)

∣∣∣2 sum geometric series

=
∣∣∣exp(−πi · (A+ 1)ηj)− exp(πi · (A+ 1)ηj)

exp(−πi · ηj)− exp(πi · ηj)

∣∣∣2
=

sin2(π(A+ 1)ηj)

sin2(πηj)

≥ sin2(π(A+ 1)ηj)

π2η2
j

∀θ ∈ R, sin(θ)2 ≤ θ2

Now,
|π(A+ 1)ηj | = π(A+ 1)|ηj | ≤ π(B + 1)r/2n+1 ≤ π/2 + πr/2n+1 < π/2 + π/(2N) ≤ 0.505π, (115)

where the last inequality uses N ≥ 100. But sin2(θ) ≥ θ2/3 for all θ ∈ [−0.505π, 0.505π] Comment: for safety, I’ve used
a rather loose bound here, so

|Sj |2 ≥
(A+ 1)2

3
. (116)

Therefore, if we measure the state in Eq. (109) in the computational basis, the probability of the measurement outcome
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being yj for some j ∈ {0, 1, . . . , r − 1} that is coprime to r is at least:

r

5 ln ln(r)
· 1

2n(A+ 1)
· (A+ 1)2

3

=
1

ln ln(r)

r(A+ 1)

15 · 2n

≥ 1

ln ln(r)

rB

15 · 2n

=
1

ln ln(r)

2n − 1− b
15 · 2n

≥ 1

ln ln(r)

2n − r
15 · 2n

≥ 1

ln ln(r)

1

15

(
1− 1

N

)
r/2n ≤ N/2n < N/N2 = 1/N

≥ 1

ln ln(r)
0.05 N ≥ 100

Comment: it took many lines above to nail down the details but the point is just that at the second line we have r(A+1) ≈ 2n.
The overall algorithm is described as follows:

Set r∗ = N + 1.
Repeat the following 10000 ln ln(N) times.

Run the procedure described above and let z be the outcome of the measurement. Compute some r′ ∈ N, r′ ≤ N
and j′ ∈ {0, 1, . . . , r′ − 1} coprime to r′ such that∣∣∣ z

2n
− j′

r′

∣∣∣ ≤ 1

2

1

2n
. (117)

There are two cases:

(a) If no such pairs r′, j′ exist, then skip to the next repeat.

(b) If r′, j′ exist, verify if x(0) = x(r′) using 2 queries. If r′ ≤ r∗, set r∗ = r′.

After all repeats are finished, output r∗.

Comment: (i) x(0) = x(r′) does not imply r′ = per(x) as r′ could be a multiple of the period; (ii) the computation can be
done by trying all possible pairs r′, j′ – we don’t care about the cost of this for query complexity. However, this takes Ω(N)
steps and is emphatically not what we would do if we want a O(poly(log(N))) time quantum algorithm, see later lectures.

We now argue that with very high probability, this procedure will yield the period r. We consider the following two cases
at each repeat. Let z denote the measurement outcome.

1. z is indeed yj for some j coprime to r. Then ∣∣∣ rz
2n
− j
∣∣∣ ≤ 1

2

r

2n
(118)

and so ∣∣∣ z
2n
− j

r

∣∣∣ ≤ 1

2

1

2n
. (119)

So certainly r′, j′ exist. But r′ ∈ N, r′ ≤ N and j′ ∈ {0, 1, . . . , r′ − 1} is coprime to r′ satisfies∣∣∣ z
2n
− j′

r′

∣∣∣ ≤ 1

2

1

2n
. (120)

Then we must have j/r = j′/r′, since

jr′ 6= j′r =⇒
∣∣∣ j
r
− j′

r′

∣∣∣ =
∣∣∣jr′ − j′r

rr′

∣∣∣ ≥ 1

N2
, (121)

but ∣∣∣ j
r
− j′

r′

∣∣∣ ≤ 1

2n
<

1

N2
, (122)

which is a contradiction. Comment: we’ve not used co-primeness before this, only r, r′ ≤ N : the above analysis shows
that for any a ∈ R there can be at most one fraction with denominator less than or equal to N that approximates a
to precision < 1/N2; this fact is what motivated the choice of n to be d2 log2(N)e + 1 But j is coprime to r and j′ is
coprime to r′ so j/r = j′/r′ =⇒ j = j′ and r = r′. Therefore, r′ = r and r∗ is set to r.
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2. z is not yj for some j coprime to r. Assume wlog that r′, j′ still exist and satisfies x(0) = x(r′) (else, nothing happens
in this repeat). Then r′ − 0 ∈ rZ so r|r′ so r′ ≥ r and so r∗ is set to an integer that is at least r.

The above analysis means if the first case occurs in at least one of the 10000 ln ln(N) repeats, then the output of the
algorithm will be correct.

At each repeat, the probability that the first case occurs is at least

0.05
1

ln ln(r)
≥ 0.05

1

ln ln(N)
. (123)

Therefore, the probability of the first case not occuring across all repeats (this is the probability of failure) is at most(
1− 0.05

1

ln ln(N)

)10000 ln ln(N)

≤ e−500 ≤ 1/3, (124)

as required.

We can prove a “poor man’s version” of the coprimality lemma (Lemma 7). Reference: Appendix 4, Problem 4.1 of
[Nielsen and Chuang]. Since we can prove this lemma from first principles, it means that we can prove Q(PeriodN ) = O(logN)
from first principles (which would also lead to a poly(log(N)) time quantum algorithm for factoring N ∈ N).

Lemma 8. For r ∈ N, let π(r) denote the number of elements in {1, . . . , r} that are prime. Then

π(2r) ≥ r

log2(2r)
. (125)

In particular, φ(2r) ≥ r/ log2(2r).

Proof. First observe that (
2r

r

)
=

(2r)

r

(2r − 1)

r − 1
. . .

r + 1

1
≥ 2r. (126)

Second, observe that for any m ∈ N and prime p ∈ N, the number of times that p appears in m! is⌊m
p

⌋
+ · · ·+

⌊m
pk

⌋
, (127)

where k is such that pk ≤ m < pk+1. Comment: proof by example, m = 5, p = 2.

Therefore, the number of times a prime p appears in
(

2r
r

)
= (2r)!

(r!)2 is given by⌊2r

p

⌋
+ · · ·+

⌊ 2r

pkp

⌋
− 2
(⌊r
p

⌋
+ · · ·+

⌊ r

pkp

⌋)
≤ kp, (128)

where kp is such that pkp ≤ 2r < pkp+1 and we used the inequality ∀x > 0, b2xc − 2bxc ≤ 1.
Clearly, only primes p with 1 ≤ p ≤ 2r can appear in the factorization of

(
2r
r

)
. Therefore

2r ≤
(

2r

r

)
≤

∏
p prime,1≤p≤2r

pkp ≤ (2r)π(2r). (129)

Taking base-2 logarithms and rearranging yields the lemma.
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Lecture 12

Time complexity of period finding and Shor’s algorithm

Order finding problem. Given a,N ∈ N with a < N such that a and N are coprime (only shared factor is 1). The
order of a modulo N is the least r ∈ N such that ar = 1 mod N , and is denoted ordN (a).

Note that the well-definedness of ordN (a) uses the coprimality of a and N : must have ai = aj (*) for some j > i since
a, a2, . . . aN+1 can’t be all distinct mod N ; but a coprime to N implies a−1 exists mod N ; multiply (*) by (a−1)i.

Proposition 12. There is a quantum algorithm that solves the order finding problem in time O(log3(N) log log(N)).

Proof sketch. Consider the function x : Z→ ZN defined by

x(s) = as mod N. (130)

Then this x satisfies
x(s) = x(t) ⇐⇒ s− t ∈ rZ, (131)

where r := ordN (a). Comment: prove this.
We saw that the period finding quantum query algorithm can use only O(log log(N)) calls to Ox to extract ordN (a) with

probability at least 2/3. The quantum query algorithm can be seen as giving us an abstract quantum circuit. To get to time
complexity we need to analyze the number of steps it takes to describe that abstract quantum circuit as a bonafide quantum
circuit. This analysis can be split into two parts: Ox part and the non-Ox part.

1. Ox part. Recall Fact 2 that the number of steps it takes to describe a quantum circuit for Ox is of the same order as
the number of steps it takes to describe a classical circuit for x.

Recall the quantum algorithm only needs to evaluate x at points {0, 1 . . . , 2n − 1}, where n = d2 log2(N)e+ 1. So we
need to be able to compute a to a power of up to 4N2 modulo N .

We can compute ak modulo N using O(log(k) log(N)2) steps by repeated squaring:

a→ a2 → (a2)2 → (a4)2 → · · · → ak, (132)

each arrow is a multiplication of two log(N) bit numbers (since we’re working modulo N) so each arrow takes log(N)2

steps (or gates; this accounting is by naive school-boy multiplication in fact can be O(log(N) log log(N)) by Fast-
Fourier-Transform (FFT) based methods). The number of arrows is log(k), so the overall cost is O(log(k) log(N)2).

So, in the worst case of k = N2, the number of steps is O(log(N)3).

2. Non-Ox part. This itself has three parts. In the following, we write n := d2 log2(N)e+ 1.

(a) Creating the uniform superposition state

1√
2n

2n−1∑
s=0

|s〉 (133)

can be done by n Hadamard gates.

(b) Quantum Fourier Transform.

Fact 3 (Quantum Fourier Transform). There exists a Turing machine Comment: algorithm that on input n ∈ N
and ε ∈ (0, 1), outputs the description of a quantum circuit that implements a unitary approximating QFT2n to
error ≤ ε in spectral norm distance, in O(n2 poly(log(n/ε))) steps. Comment: combination of: decomposition of
QFT into Hadamard and controlled rotation gates (see [Wikipedia]) + Solovay-Kitaev theorem.

Suffices to take ε = O(1/ log n) since QFT2n will be applied O(log log(N)) = O(log n) times. Then the number of
steps to describe one QFT is O(n2 poly(logn)).

(c) Continued fractions algorithm.

Fact 4. There exists a Turing machine Comment: algorithm that on input 0n 6= b1, . . . , bn ∈ {0, 1}n, outputs all
the convergents

(p1, q1), . . . , (pk, qk) (134)

of ϕ := 0.b1 . . . bn in O(n3) steps, where pi, qi ∈ N, pi/qi < 1 and pi is coprime to qi for all i.

Moreover, suppose there exists coprime p < q ∈ N such that∣∣∣ϕ− p

q

∣∣∣ ≤ 1

2q2
, (135)

then there exists a ∈ [k] such that p = pa and q = qa.
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Using this fact, for each convergent (pi, qi) of z/2n, we check whether∣∣∣ z
2n
− pi
qi

∣∣∣ ≤ 1

2

1

2n
and qi ≤ N (136)

and output qi as the solution for r when this is satisfied. Comment: assume check takes unit time.

Correctness when z is equal to yj for some j ∈ {0, 1, . . . , r − 1} coprime to r:

i. (j, r) must appear as a convergent of z/2n since j is coprime to r and∣∣∣ z
2n
− j

r

∣∣∣ ≤ 1

2
· 1

2n
≤ 1

2N2
≤ 1

2r2
. (137)

Moreover, r ≤ N .

ii. if a convergent (pl, ql) satisfies ∣∣∣ z
2n
− pl
ql

∣∣∣ ≤ 1

2

1

2n
, (138)

then noting that ql ∈ N, ql ≤ N and pl ∈ {0, 1, . . . , ql − 1} is coprime to ql, by the argument in the proof of
Proposition 11, we must have pl = j and ql = r.

Therefore, the time complexity (number of steps needed to describe the circuit) of each repeat is of order

n+ log(N)3 + n2 poly(log n) + n3, (139)

where the first term is creating the uniform superposition, second term is the oracle call, third term is QFT, and
last term is continued fractions algorithm.

Therefore, the overall cost is O(n3 log log(N)) = O(n3 log(n)), where n = d2 log2(N)e+1 (n is order of the number
of digits of N .)

Quantum factoring algorithm (Shor)
Input: N ∈ N, N > 2.

1. Check N for parity. If N is even, then output “2”, else go to Step 2.

Cost: unit (check last binary digit is 0.)

2. Check if N is the kth power of a natural number for k = 2, . . . , dlog2(N)e. If N = yk, then output “y”, else go to Step
3.

Cost of taking square root is O(log(N)) by binary search-type method; by repeated square-rooting, cost of taking kth
root is O(log(k) log(N)). So doing all of this is Õ(log(N)2).

3. Chooose a← {1, . . . , N − 1}. Compute b = gcd(a,N) by Euclidean algorithm.

Cost: O(log2(a+N)) = O(log(N))

If b > 1, then output “b”, else proceed to Step 4.

4. Compute r := ordN (a) using the quantum period finding algorithm. (Recall this means r is the least positive integer
such that ar = 1 mod N .)

Cost: O(log3(N) log log(N)) quantumly.

If r is odd, output “don’t know”, else go to Step 5.

5. Compute d = gcd(ar/2 − 1 mod N,N). If d > 1, then output “d”; otherwise output “don’t know”.

Cost: O(log(N)). Note the mod N on the ar/2 − 1 is important and has to be done “online” while ar/2 is being
computed: ar/2 could be of length Ω(N) so even writing it down takes Ω(N) time.

Runtime. Õ(log3(N)) by the red text. Comment: can be reduced to Õ(log2(N)) by using FFT to do the repeated squaring
in the quantum component.
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Correctness.

Proof sketch. We split the analysis into three N -dependent cases.

1. N is prime > 2. In this case, the algorithm will output “don’t know” with probability 1 because if it doesn’t output
“don’t know” it would output a factor of N in (1, N) – impossible for N prime.

2. N is composite with 1 distinct prime factor. In this case, step 2 will output the prime.

3. N is composite with m ≥ 2 distinct prime factors. In this case, we claim that with at least probability 1/3, the
algorithm doesn’t output “don’t know”, in which case it must output a non-trivial factor of N .

Therefore, we can repeat the algorithm 10000 times and if it returns “don’t know” across all repeats, we declare that N is
prime. If at any repeat it returns an integer, then that integer must be a non-trivial factor of N by definition and we output
it. The probability of being incorrect is ≤ (2/3)10000.

Analysis of case 3. If the algorithm outputs an integer in steps 1, 2, 3, then it is definitely a non-trivial factor of N by
definition. Therefore, we analyze from step 4. At the start of step 4, N is odd, has m ≥ 2 distinct prime factors, and a can
be viewed as a natural number chosen uniformly at random from the set

{x ∈ {1, . . . , N − 1} | x is coprime to N}. (140)

We use the following non-trivial fact from number theory:

Fact 5 (See, e.g., Theorem 5.3 of [Nielsen and Chuang]– the theorem should have m − 1 instead of m; see [Kitaev, Shen,
Vyalyi].). Under the above setup:

Pr[r is even and ar/2 6= −1 mod N ] ≥ 1− 1

2m−1
≥ 1

2
, (141)

where the probability is over the uniformly random choice of a from the set in Eq. (140).

Conditioned on the event in Eq. (141)

(ar/2 − 1)(ar/2 + 1) = 0 mod N, (142)

so
N |(ar/2 − 1)(ar/2 + 1), (143)

yet
N - (ar/2 − 1) and N - (ar/2 + 1), (144)

where the first not-divide is because r is the period. So N must share a non-trivial factor (i.e., not 1 or N) with ar/2 − 1,
which will be extracted by Step 5.

The computation of the r is correct with probability at least 1/3, so the probability of the output being correct is at least
1/2× 2/3 = 1/3.
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Lecture 13

Definition 20 (Group). A group G = (S, α) is defined by a set S and a function α : S×S → S with the following conditions.
(For g, h ∈ S, we write g · h or simply gh as shorthand for α(g, h).)

1. Identity. There exists an e ∈ S such that ∀g ∈ S, ge = eg = g — this definition implies the e is unique.

2. Inverse. For all g ∈ S, there exists h ∈ S such that gh = hg = e.

3. Associativity. For all g, h, k ∈ S, (gh)k = g(hk). (That is, α(α(g, h), k) = α(g, α(h, k)).)

If we additionally have: for all g, h ∈ S, gh = hg, then the group is called abelian.

Observation: for a given g ∈ S, there is a unique element h such that gh = hg = e and we can denote it without ambiguity
by g−1. (Proof: suppose h1, h2 ∈ S both satisfies this, then

g = gh1 = gh2 =⇒ h1(gh1) = h1(gh2) =⇒ (h1g)h1 = (h1g)h2 =⇒ eh1 = eh2 =⇒ h1 = h2, (145)

where the second implication uses associativity. )
The size of G or the “order of G” is the size of the set defining G and is denoted |G|. G is a finite group if its size is finite.

Example 2.

1. The set S = Fn2 and α = component-wise addition mod 2. This is abelian.

2. The set S = Z and α = addition. This is abelian.

3. The set S of invertible n×n complex matrices and α = multiplication. This is not abelian – matrix multiplication does
not commute.

4. The set S of “symmetries of the regular n-gon” and α = “composition of symmetries”. S has size 2n — n reflections
and n rotations. Formally, S can be expressed as

S = {σsτa | x ∈ Zn, a ∈ Z2}. (146)

We will write (s, a) ∈ Zn × Z2 for σsτa for notational convenience. Then the α is defined by

α((s, a), (t, b)) = (s+ (−1)at, a+ b). (147)

This implies that (s, a)−1 = (−(−1)as, a).

The group is often denoted D2n.

Definition 21. Let G = (S, α) be a group. We say T ⊆ S forms a subgroup of G if:

1. T contains the identity element of G.

2. T is closed under α, i.e., g, h ∈ T =⇒ gh ∈ T .

3. T contains inverses, i.e., g ∈ T =⇒ g−1 ∈ T .

This definition means that (T, α|T ) is a group, where α|T is the natural restriction of α to T . We say (T, α|T ) is a subgroup
of G. Often the function α (aka group operation) is implicit in which case it’s common to abuse language and identify the
set S with the group G and the set T with the subgroup (T, α|T ).

Example 3.

1. For any G, {e} and G itself are subgroups of G.

2. For r ∈ Z, rZ := {rz | z ∈ Z} is a subgroup of Z.

3. For y ∈ Zn,
T := {(0, 0), (s, 1)} = 〈(y, 1)〉 (148)

is a subgroup of D2n (Follows from (s, 1)(s, 1) = (s− s, 1 + 1) = (0, 0); order-2 subgroup of reflections.)
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Definition 22 (Hidden subgroup problem (HSP)). Let G be a finite group and let H denote a set of subgroups of G. Let
Σ be an alphabet with |Σ| ≥ |G|. The hidden subgroup problem HSP(G,H) is the problem of computing the function

f : D ⊆ ΣG → H, (149)

where x ∈ D if and only if there exists H ∈ H such that

x(g) = x(h) ⇐⇒ gH = hH, (150)

where gH := {gh | h ∈ H}, and f(x) is defined to be the H associated with x. Comment: homework: check that this is
well-defined.

Remark 14. The definition could be generalized to infinite groups G in the case where

max
H∈H

∣∣G : H
∣∣ <∞, (151)

where
∣∣G : H

∣∣ is the index of H in G – see [Wikipedia]. Then require |Σ| ≥ maxH∈H |G : H|. This would capture Shor’s
case: H := {rZ | r ∈ {1, 2, . . . , N}}.

Example 4. So far we have studied the HSP for two abelian groups.

1. Simon’s problem. G = Fn2 (with component-wise addition), H := {{0, a} | 0 6= a ∈ Fn2}, and Σ = {0, 1, . . . , n− 1}. Note
that

gH = hH ⇐⇒ {g · 0, g · a} = {h · 0, h · a} ⇐⇒ {g, g + a} = {h, h+ a} ⇐⇒ g ∈ {h, h+ a}. (152)

2. Period finding problem. G = Z, H = {rZ | r ∈ {1, 2, . . . , N}}, and Σ = ZN .

Interlude on mixed quantum states. We know that quantum states are complex vectors |ψ〉 ∈ Cd. We also know
that a Γ-outcome measurement is a process that when performed on |ψ〉 results in a measurement outcome i ∈ Γ and a
post-measurement state |ψi〉 with probability pi. In the analysis of Simon’s problem and period finding, we either:

1. did not care about what the distribution on (i, |ψi〉) was (the first measurement: any i works as the next step is a QFT
that washes it out) or

2. did care about the distribution on i but not what the post-measurement state was (the second measurement: uniformly
random i used to lower bound probability of linear independence/coprimality, respectively).

In either case, we did not care about the distribution on the post-measurement state.
However, in the algorithm for the HSP, we will post-process the post-measurement state |ψi〉 in a way that requires us to

care about the distribution on the post-measurement state when performing its analysis. Now, there are two ways of doing
the analysis.

1. Naive but hard way. For each i ∈ Γ, we analyze how the post-processing behaves on |ψi〉 and then average the behaviour
for each i over the distribution {pi}. Hard because the analysis loops over Γ; especially bad when Γ is massive.

2. Sophisticated but easier way. We define a single object that describes the post-measurement state in a way that takes
the probability distribution into account:

ρ :=
∑
i∈Γ

pi|ψi〉〈ψi| (153)

and then analyze how the post-processing behaves on ρ. Easier because there’s no more loop over Γ.

Quantum information theory has developed tools for analyzing how processing behaves on ρ in a way that is completely
consistent with the naive analysis. One of them is the next lemma. First some definitions.
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Lecture 14

Definition 23 (Mixed quantum state). Let d ∈ N. A d-dimensional mixed (quantum) state is a matrix ρ ∈ Cd×d that is
positive semi-definite (PSD) and has trace 1.

Quantum states |ψ〉 ∈ Cd are often called “pure quantum states” and can be viewed as mixed quantum states of rank 1
via |ψ〉 ↔ |ψ〉〈ψ|.

For example, the matrix in Eq. (153) is a mixed quantum state – follows from the definition of a measurement. In general,
a mixed quantum state can be used to describe any probability distribution over quantum states (pi, |ψi〉) 7→

∑
i pi|ψi〉〈ψi|.

(I.e., not just restricted to the distribution arising from a measurement.) Comment: the mapping is not invertible but it does
not destroy information, since the information content of (pi, |ψi〉) is

∑
i pi|ψi〉〈ψi|. Put another way: you cannot distinguish

between (pi, |ψi〉) and (p′i, |ψ′i〉) using any procedure if their corresponding mixed states are the same. E.g., ( 1
2 , |0〉), (

1
2 , |1〉)

and ( 1
2 , |+〉), (

1
2 , |−〉).

Definition 24 (Measurement on mixed quantum states). Let Γ be an alphabet and d ∈ N. Let M := {Πi | i ∈ Γ} be a
measurement. Given a mixed quantum state ρ ∈ Cd, to measure ρ using M refers to a process that

1. Outputs i ∈ Γ with probability tr[Πiρ]. This i is referred to as the measurement outcome.

2. The mixed quantum state changes to
ΠiρΠi

tr[Πiρ]
. (154)

The effect of a quantum measurement on a mixed quantum state is consistent with the effect of a quantum measurement
on (pure) quantum states.

Definition 25 (Schatten p-norms). Let p ∈ [1,∞) and d ∈ N. The Schatten p-norm of A ∈ Cd×d is defined to be

‖A‖p := [Tr[(A†A)p/2]]1/p (155)

The Schatten ∞-norm of A is defined to be the the spectral norm of A, which coincides with limp→∞ ‖A‖p.

Definition 26 (Fidelity between mixed quantum states). For ρ, σ ∈ Cd×d that are mixed quantum states, the fidelity
between ρ and σ is defined to be

F (ρ, σ) := ‖√ρ
√
σ‖1, (156)

Comment: have F (ρ, σ) = tr[|√ρ
√
σ|), where |X| :=

√
X†X. (This definition is symmetric.) Note: for C Hermitian of the

form
∑
i λi|vi〉〈vi| with λi > 0,

√
C is defined to be

∑
i

√
λi|vi〉〈vi|. Also F (A,B) = F (B,A) follows from tr[|X|] = tr[|X†|]

for any X ∈ Cd – think SVD.

Lemma 9 (Pretty Good Measurement). Let N, d ∈ N. Let ρ1, . . . , ρN ∈ Cd×d be mixed quantum states. Then there exists
an [N ]-outcome measurement M := {Π1, . . . ,ΠN} on CN ⊗ Cd such that

∀i ∈ [N ] : tr[Πi |0〉〈0| ⊗ ρi] ≥ 1−N
√

max
a6=b

F (ρa, ρb), (157)

where |0〉 is the first standard basis vector of Cd.

Proof. Omitted. See [Harrow and Winter’06] (which applies von Neumann’s minimax theorem to [Barnum and Knill’00]).

Lemma 10 (Hölder’s inequality for Schatten p-norms). Let p ∈ [1,∞] and p∗ ∈ [1,∞] satisfy 1/p + 1/p∗ = 1. Let d ∈ N.
Then, for A,B ∈ Cd×d, we have

‖AB‖1 ≤ ‖A‖p‖B‖p∗ . (158)

Proof. Omitted, non-trivial. Variant more often seen is |〈A,B〉| ≤ ‖A‖p‖B‖p∗ , where 〈A,B〉 := A†B. Here’s a reduction to
that variant. Let r := rk(A). Write

AB =

r∑
i=1

σi|ui〉〈vi|, (159)

so ‖AB‖1 =
∑r
i=1 σi.

Let U ∈ Cd×d unitary be such that U† |vi〉 = |ui〉. Then

AB =

r∑
i=1

σiU
†|vi〉〈vi|. (160)
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So

tr[UAB] =

r∑
i=1

σi. (161)

But
tr[UAB] = 〈A†U†, B〉 ≤ ‖A†U†‖p‖B‖p∗ = ‖A‖p‖B‖p∗ , (162)

where the last equality uses the unitary invariance of the Schatten p-norm and its invariance under conjugate transpose.

Remark 15. Further ingredients: von Neumann’s trace inequality: | tr[AB] | ≤
∑d
i=1 σi(A)σi(B) (see [Stackexchange post])

and the normal Hölder’s inequality.

Lemma 11. Let ρ, σ be mixed quantum states. Then F (ρ, σ) ≤
√

tr[Πρ · σ], where Πρ is the orthogonal projector onto the
support of ρ.

Proof. Follows from Hölder’s inequality with p = 2.

Lemma 12. Let G be a finite group, H,H ′ ≤ G (subgroups of G), and g, g′ ∈ G. Then

|gH ∩ g′H ′| =

{
|H ∩H ′| if g−1g′ ∈ HH ′,
0 otherwise.

(163)

Proof. See Homework 3.

Lemma 13. Let N denote the number of subgroups of G. Then N ≤ (|G|+ 1)log2 |G|.

Proof. Each subgroup K can be specified by a set of independent generators g1, . . . , gk. Moreover k ≤ log2 |K| ≤ log2 |G|,
where the first inequality follows since each new independent generator increases the size of the subgroup by at least 2.

Therefore, the number of subgroups is at most(
|G|

≤ log2 |G|

)
≤ (|G|+ 1)log2 |G|. (164)

All of the above serves as preliminaries for the following result.

Proposition 13. Let G be a finite group. Let H be the set of all subgroups of G. Then Q(HSP(G,H)) = O(log2(|G|)).

Proof. We covered this following Chapter 10.3 of [AMC].
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Lecture 15

For n ∈ N, let Dihedral2n denote the HSP with G = D2n, H = {〈(s, 1)〉 | s ∈ Zn} and Σ = {0, 1, . . . , 2n− 1}.

Definition 27 (Quantum non-oracular time complexity). Let f : D ⊆ Σn → Γ. The quantum non-oracular time complexity
of a quantum query algorithm A computing f with bounded error 1/3, denoted T (A), is the depth of A plus the total number
of steps needed for a Turing machine to describe the quantum circuits implementing the non-oracular unitaries in A. The
quantum non-oracular time complexity of f , denoted T (f), is defined to be

T (f) = min
A computes f with bounded error 1/3

T (A). (165)

By definition Q(f) ≤ T (f).

Proposition 14 (Kuperberg’s algorithm). T (Dihedral2n) = 2O(
√
n).

Proof. Comment: first steps are the same as the generic steps in the HSP. Let x ∈ D ⊆ ΣG be the input. Let 〈s, 1〉 be the
hidden subgroup associated with x, where s ∈ Zn.

Create the state
1√
2n

∑
t∈Zn,a∈Z2

|t, a〉 |x(t, a)〉 , (166)

where x(t, a) means x((t, a)).
Measure the second register in the computational basis, which yields an element x0 ∈ {0, 1, . . . , 2n− 1}. The state of the

first register becomes
1√
2

(|t′0, a0〉+ |t′0 + (−1)a0s, a0 + 1〉), (167)

where x(t′0, a0) = x0. Comment: can verify by:

x(t′, a′) = x(t′0, a0) ⇐⇒ (t′, a′)〈(s, 1)〉 = (t′0, a0)〈(s, 1)〉

⇐⇒ {(t′, a′), (t′ + (−1)a
′
s, a′ + 1)} = {(t′0, a0), (t′0 + (−1)a0s, a0 + 1)}

⇐⇒ (t′, a′) ∈ {(t′0, a0), (t′0 + (−1)a0s, a0 + 1)}.

Eq. (167) can be written
1√
2

(|t0, 0〉+ |t0 + s, 1〉), (168)

for some t0 ∈ Zn. Comment: two cases: a0 = 0 and a0 = 1.
We now do QFTn on the first register Comment: i.e, do QFTn⊗12. Write ω := exp(2πi/n). This gives

1√
2

( 1√
n

n−1∑
k=0

ωt0k |k, 0〉+
1√
n

n−1∑
k=0

ω(t0+s)·k |k, 1〉
)

=
1√
n

n−1∑
k=0

ωt0k |k〉 1√
2

(|0〉+ ωks |1〉)

Measure the first register in the computational basis. Obtain uniformly random k ∈ {0, . . . , n − 1} and the state of the
second register becomes:

|ψk〉 :=
1√
2

(|0〉+ ωks |1〉). (169)

Then started covering Kuperberg’s algorithm following Chapter 13 of [AMC].
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Lecture 16

Finished covering Kuperberg’s algorithm following Chapter 13 of [AMC].

Another approach to DHSP. Comment: elaboration on Chapter 13.6 of [AMC]
HSP on D2n with hidden subgroup 〈s, 1〉, where s ∈ Zn.
We know how to generate the following

k ← Zn and |ψk〉 :=
1√
2

(|0〉+ ωks |1〉), (170)

where ω = exp(2πi/n).
Measure in the Hadamard basis

Pr[+ | k] = | 〈+|ψk〉 |2 = cos2
(πks
n

)
. (171)

Comment: two random correlated variables here: K ∈ Zn and B ∈ {+,−}; formally, should write Pr[K = k | B = +].
So by Bayes’ rule

Pr[k | +] =
Pr[+ | k] · Pr[k]

Pr[+]
=

cos2
(
πks
n

)
· 1
n

1
n

∑n−1
j=0 cos2(πjsn )

=

{
1
n if s = 0,
2
n cos2

(
πks
n

)
if s 6= 0.

(172)

Trick for analyzing the sum in the denominator:

1

n

n−1∑
j=0

cos2
(πjs
n

)
=

1

n

n−1∑
j=0

1 + cos( 2πjs
n )

2
=

1

2
+

1

2n
Re

[
n−1∑
j=0

exp(i · 2πs/n)j

]
=

1

2
, (173)

where the last equality follows from summing a geometric series.
It is known that distinguishing between the distributions {Ds | s ∈ Zn} takes m = O(log(n)) samples, but it is not known

how to do this in O(poly(log(n))) time.
In fact, a time-inefficient way of doing this is by

ŝ := arg max
s′∈Zn

m∑
i=1

Pr[ki | +; s′], (174)

where the kis are samples from Ds. (Like maximum likelihood estimation.)

Quantum walk. Motivating problem: Element distinctness EDn : [n]n → {0, 1}n, EDn(x) = 1 if and only if x contains a
repeated symbol. Example n = 5:

EDn(1 2 3 4 5) =0.

EDn(1 2 2 3 4) =1.

Before discussing quantum walk. Let’s discuss another useful approach that can be applied here to give a non-optimal
bound – but is very useful in general.

Proposition 15 (Amplitude amplification). Let d ∈ N and θ ∈ [0, π/2]. Let |ψ〉, |ψ0〉, |ψ1〉 be d-dimensional quantum states
and

|ψ〉 := cos(θ) |0〉 |ψ0〉+ sin(θ) |1〉 |ψ1〉 . (175)

Let
G := 12d − 2|ψ〉〈ψ| and U := 12d − 2|1〉〈1| ⊗ 1d . (176)

Then, for all k ∈ N,
(GU)k |ψ〉 = (−1)k(cos((2k + 1)θ) |0〉 |ψ0〉+ sin((2k + 1)θ) |1〉 |ψ1〉) (177)

Proof. Essentially the same as the steps leading to Eq. (45) in Lecture 3.

In particular, writing sin(θ) =
√
p (so that the probability of measuring 1 in the computational basis on the first register

of the initial state is p), then we can take

k = b π
4θ
− 1

2
e ∈

[ π
4θ
− 1,

π

4θ

]
; k ≤ π

4

1
√
p

(178)
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to have
sin((2k + 1)θ) ∈

[
sin(

π

2
− θ), 1

]
= [
√

1− p, 1] (179)

Typical application. Suppose we have a unitary A such that A |0〉 = |ψ〉 so G = A(1 − 2|0〉〈0|)A−1. The success
probability is the probability of measuring |1〉 in the first register. Then A has success probability p. But to amplify the
success probability to close to 1 takes O(1/

√
p) applications of A and A−1 (these usually have the same or similar costs).

Quadratically better than the classical case.
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Lecture 17

Covered:

1. Application of amplitude amplification to element distinctness – resulting bound is suboptimal.

2. Introduction to the quantum walk framework.

References: Chapter 19.1, Chapter 17.1-2 of [AMC].
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Lecture 18

Covered: Quantum walk spectral theorem: relating the spectrum of the Szegedy quantum walk operator of a stochastic
n× n matrix P to that of the discriminant matrix of P .

References: Chapter 17.3 of [AMC].
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Lecture 19

Covered: quantum walk algorithm for detecting existence of marked items.

References: Chapter 17.4 of [AMC].

Additional material: Let ε, δ ∈ (0, 1). Quantum walk algorithm for deciding between no marked items and ≥ εn marked
items based on symmetric stochastic n × n matrix P and a “marked” subset M ⊆ [n] that is either empty or |M | ≥ εn.
Assume 2nd largest eigenvalue of P is ≤ 1− δ.

1. turn P to P ′, the variant of P that stops upon reaching M .

2. create the state
1√

n− |M |

∑
j /∈M

|ψj〉 = T
1√

n− |M |

∑
j /∈M

|j〉 , (180)

where T :=
∑n
j=1 |ψj〉〈j|.

3. phase estimation with unitary U equal to Szegedy quantum walk operator corresponding to P ′ and state equal to the
state above with accuracy O(

√
δε) and confidence 0.99. Comment: stress the dash/prime!

Let PM be the (n − |M |) × (n − |M |) submatrix of P corresponding to indices not in M . Note that the discriminant
matrix of P ′ is then

D(P ′) =

(
PM 0
0 1|M |

)
(181)

Proposition 16 (Quantum phase estimation). Let U ∈ Cn×n be unitary. Let |ψ〉 ∈ Cn be a quantum state. Let ε, δ ∈ (0, 1).
Let |θ1〉 , . . . , |θn〉 be a complete orthonormal basis of eigenvectors of U with eigenvalues eiθ1 , . . . , eiθn , respectively. Write

|ψ〉 =

n∑
j=1

aj |θj〉 , (182)

for some aj ∈ C. Then there exists a quantum circuit using O(ε−1 log(1/δ)) applications of c-U := |0〉〈0| ⊗ 1n +|1〉〈1| ⊗ U ∈
C2n×2n that outputs a θ ∈ [0, 2π) such that with probability |aj |2:

Pr[|θ − θj |circle ≤ ε] ≥ 1− δ, (183)

where for x ∈ R, |x|circle := min{|y| | y ∈ R, y = x mod 2π}.

Remark 16. Note that θj is only defined up to multiples of 2π but the proposition is still well-defined due to the circle
norm being used. (Similarly, there is some freedom in |θj〉 and aj but the proposition is still well-defined.)
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Lecture 20

Covered: application of the quantum walk framework to ORn and EDn.

References: Chapters 18.1-18.2 and Chapter 19 of [AMC].
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Lecture 21

Covered: adversary method, application to quantum lower bound for ORn, started proof that the adversary quantity lower
bounds quantum query complexity.

References: Chapter 22 of [AMC].
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Lecture 22

Covered: finished proof that the adversary quantity lower bounds quantum query complexity, stated that it also provides
an upper bound and its composition properties with respect to OR and AND, covered quantum divide and conquer using
the adversary quantity including two applications: (a) recognizing 20∗2 and (b) k-common subsequence.

References: Chapter 22 of [AMC] and [CKKSW’22].
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Lecture 23

Block encoding and quantum signal processing (QSP).

Motivating example: quantum simulation or Hamiltonian simulation.

Definition 28. An n-qubit Hamiltonian is a Hermitian matrix in C2n×2n

.

Quantum simulation problem.
Input: the description of an n-qubit Hamiltonian H, t ∈ (0,∞), and ε ∈ (0, 1).

Output: the description of the quantum circuit that implements a unitary U ∈ C(2n+m)×(2n+m) that approximates
exp(−itH) to error ε in operator norm distance on the subspace C2n ⊕ 0. That is

‖(〈0| ⊗ 12n)U |0〉 |ψ〉 − exp(−itH) |ψ〉 ‖2 ≤ ε (184)

for all |ψ〉 ∈ C2n

, where |0〉 denotes the first standard basis vector in C2m

.

For the quantum simulation problem, we care both about its time complexity and the size of the quantum circuit that is
generated. In fact, we often care more about the latter since that circuit will be run on real quantum hardware which (given
current experimental progress) is very difficult if the circuit size is not small.

There are multiple ways that H can be described. Two of the most important and practically relevant are the sparse
oracle description and the Pauli-decomposition description. For concreteness, let’s focus on the latter.

Definition 29. An n-qubit Pauli matrix is a 2n × 2n matrix of the form A1 ⊗ · · · ⊗An, where Ai ∈ {I,X, Y, Z} and

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (185)

X,Y, Z are known as the “Pauli-X,Y ,Z” matrices.

In many quantum physics/chemistry setups, a system of “size” n (e.g., number of particles) can be described by an
n-qubit Hamiltonian that is a weighted sum of a small number of Pauli matrices

H =

N∑
j=1

ajPj , (186)

where aj ∈ R and Pj is an n-qubit Pauli matrix, and N = O(poly(n)). Example: for electronic systems under certain
approximations, N = O(n4) where n is the number of electrons. Comment: assuming number of spin orbitals used = O(n);
reasonable to use 2n spin orbitals as each electron can have two spins. Observe that even though H is a 2n × 2n matrix, its
description length is O(poly(n)).

We’ll assume
∑n
j=1 |aj | = 1 as otherwise can scale the simulation time t to compensate. This implies ‖H‖ ≤ 1.

Method 1: Trotterization. Historically, the main approach to Hamiltonian simulation when the input is described as a
Pauli decomposition has been Trotterization. This method is based on the observations that

1. the quantum circuit for exp(−iajPj) is easily described with O(n) gates (see Section 4.7.3 of [Nielsen and Chuang]),

2. exp(
∑
j Aj) = limm→∞(

∏
j exp(Aj/m))1/m.

However, this approach outputs a quantum circuit with O(nN4t2/ε) gates. The time complexity of generating the circuit,
i.e., actually solving the quantum simulation problem, is also O(nN4t2/ε). For more details, see Section 6 of [Jozsa notes].
Comment: I’m assuming here that single-qubit rotation gates don’t need compilation, otherwise there’ll be some more logs
from Solovay-Kitaev. I’m also assuming that each aj costs constant time to compute.

Method 2: QSP. A more recent approach outputs a quantum circuit with

O(nN(t+ log(1/ε))) (187)

gates which can be shown to be optimal in certain query formulations of the Hamiltonian simulation problem.
The high-level approach is:
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1. Generate a circuit implementing a unitary U such that

U =

(
H ·
· ·

)
(188)

Here, · stands for arbitrary matrices (subject to U being unitary). U is called a block encoding of H. As long as
‖H‖ ≤ 1, such a U always exists – see Homework 4. (In fact, the optimality mentioned above can be proven in terms
of calls (queries) to U .)

Can construct U explicitly using the “Prepare-Select-Prepare−1 circuit” (similar to the LCU proposition in the next
lecture) which takes time O(nN). The resulting circuit also has size O(nN) and implements U ∈ CN2n×N2n

that acts
on k := O(log(N) + n) qubits.

2. Compute a polynomial p ∈ C[x] of degree d := O(t + log(1/ε)) that approximates the function exp(−itx) to error
ε in infinity norm over the interval [−1, 1]. Compute α > 0 such that6 |p(x)/α| ≤ 1/4 for all x ∈ [−1, 1]. For the
Hamiltonian simulation example, α = 8 suffices because if p(x) is ε ∈ (0, 1) close to exp(−itx) for all x ∈ [−1, 1], then
|p(x)| ≤ 2 for all x ∈ [−1, 1].

Use the quantum signal processing framework to generate a circuit involving a single use of single-qubit controlled-U ,
O(d) uses of (U , U†, a simple gate acting on k + 1 qubits, and a simple gate acting on 3 qubits) that implements a
unitary7

Ṽ :=

(
p(H)/α ·
· ·

)
(189)

acting on k + 3 qubits. Comment: +1 from the original signal processing of P and Q (see below), +2 from LCU of 4
parts: real even, real odd, imaginary even, imaginary odd (see paragraph after Theorem 56 in [GSLW’18]).

Theorems in the framework says this takes time O(poly(d, log(1/ε)) + d2 + kd + nNd) Comment: the first term is
to produce the P,Q pair that satisfies all the conditions of Proposition 17 in the next lecture, the second term is to
construct the phase sequence for P and Q. The resulting circuit has size O(kd+ nNd) = O(nN(t+ log(1/ε))).

3. Use a variant of amplitude amplification (called oblivious amplitude amplification) to generate a circuit implementing
unitary

V :=

(
p(H) ·
· ·

)
(190)

This uses O(α) calls of Ṽ and all costs above in item 2 are scaled by α. V satisfies the output conditions of the quantum
simulation problem.

The key point is the degree bound on the polynomial in the second step since the complexity of QSP scales with the
degree. For Hamiltonian simulation, we are approximating the function f : [−1, 1] → C, f(x) = exp(−itx), which can be
done using the Jacobi-Anger expansion:

max
x∈[−1,1]

∣∣∣e−itx − (J0(−t) + 2

K∑
k=1

ikJk(−t)Tk(x)
)∣∣∣ ≤ ε (191)

for some K = O(t + log(1/ε)), where Jk is a Bessel function and Tk(x) is the kth Chebyshev polynomial. For more details,
see Section 27.4 of [AMC].

The QSP framework is very powerful because it reduces many problems (not just Hamiltonian simulation) to finding
polynomial approximations, e.g.,

1. solving linear systems quantumly: approximating f(x) = 1/x,

2. solving (time-independent) differential equations quantumly: approximating f(x) = ext,

3. ground state preparation: approximating fµ(x) = 1[x ≤ µ] for judiciously chosen values of µ.

For more, see [MRTC’21] and Chapters 6-8 of [Lin notes].
It is important to stress that “solving linear systems quantumly” (and analogously for “solving differential equations

quantumly”) refers to producing a quantum state |x〉 =
∑N
i=1 xi |i〉 whose amplitudes are proportional to the solution to

an N × N linear system Ax = b, which is very different from producing x stored as an array (the typical classical output
condition). |x〉 could be used to recover x in time scaling as O(N) which is not what we typically want to do as it removes any
exponential (in N) quantum advantage. The hope is that we could perform measurements on |x〉 to obtain average-statistics
about x in time scaling as O(log(N)) which might preserve an exponential advantage. How to do this concretely is a crucially
important open problem. For more discussions on this, [read the fine print].

6The 1/4 comes from Theorem 56 [GSLW’18] and the remark afterwards.
7Technically, should be “whose top-left block is a p̃(H) where p̃ is a polynomial that is ε-close to p/α in infinity norm on [−1, 1]”, this is due to

root-finding algorithm used to produce (P,Q) from p which has complexity scaling as poly(d, log(1/ε)) – see the next lecture.
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Lecture 24

For x ∈ [−1, 1], let

U(x) :=

(
x

√
1− x2

√
1− x2 −x

)
. (192)

U(x) can be seen as a block encoding of the 1× 1 Hermitian matrix x with ‖x‖ ≤ 1.

Proposition 17. Let P,Q ∈ C[x]. There exists Φ := (φ0, . . . , φd) ∈ Rd+1 such that

UΦ := eiφ0Z
d∏
j=1

(U(x)eiφjZ) =

(
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

)
(193)

if and only if P,Q satisfy

1. deg(P ) ≤ d, deg(Q) ≤ d− 1.

2. P has parity d mod 2 and Q has parity d− 1 mod 2.

3. ∀x ∈ [−1, 1], |P (x)|2 + (1− x2)|Q(x)|2 = 1.

Here, deg(Q) = −1, means Q = 0.

Proof. The “only if” direction is obvious. The “if” direction can be proven by induction, see, e.g., Lemma 27.1 in [AMC]
and the paragraph after the proof. (The proof also gives a way of computing Φ in time O(d2)).

However, the third condition in Proposition 17 is hard to work with. Fortunately, we have the following.

Proposition 18. There exists an algorithm with the following properties.

1. Input. p ∈ R[x], d ∈ N, and δ ∈ (0, 1) such that

(a) deg(p) ≤ d.

(b) p has parity d mod 2.

(c) ∀x ∈ [−1, 1], |p(x)| ≤ 1.

2. Output. P,Q ∈ C[x] and Φ := (φ0, . . . , φd) ∈ Rd+1 such that

(a) |Re(P )(x)− p(x)| ≤ δ and |Re(Q)(x)| ≤ δ for all8 x ∈ [−1, 1].

(b) the following equation holds:

UΦ := eiφ0Z
d∏
j=1

(U(x)eiφjZ) =

(
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

)
. (194)

3. Runtime. O(poly(d, log(1/δ))).

Proof. The idea is to reduce to Proposition 17 by computing the roots of p and using them to construct the P and Q
satisfying both condition (a) and the conditions of Proposition 17. Computing the ≤ d roots of p to precision δ requires
O(poly(d, log(1/δ))) time. See Corollary 10 of [GSLW’18].

Remark 17. There are software packages implementing Proposition 18, e.g., [QSPPACK].

The parity constraint may also seem restrictive but it can be handled by the “Linear Combination of Unitaries” (LCU)
technique, first introduced in [Childs and Wiebe’12]. Suppose p ∈ R[x] satisfies the conditions in Proposition 18, except for
the parity condition. Then we can write p = peven + podd, where peven and podd are the even and odd parts of p respectively.
Then we can implement a block encoding of p(x)/2 by applying the LCU proposition below to the block encoding of peven(x)
and podd(x) with α = β = 1/2. LCU has many other uses besides this.

8Could also be {x ∈ C | |x| ≤ c} where c is a constant. The computation is by a root finding algorithm that might turn x2 into, say, (x− δ)2;
the difference of the two is bounded by O(δ) on any compact set like {x ∈ C | |x| ≤ c} but not on C.
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Proposition 19 (Linear Combination of Unitaries (LCU)). Let U, V ∈ Cn×n be unitaries and α, β ≥ 0 such that α+ β = 1.
Then there exists a circuit using the following unitaries

c0-U := |0〉〈0| ⊗ U + |1〉〈1| ⊗ 1n, (195)

c1-V := |0〉〈0| ⊗ 1n +|1〉〈1| ⊗ V, (196)

once each that implements a 2n× 2n unitary of the form

W :=

(
αU + βV ·
· ·

)
. (197)

Proof. Let unitary P ∈ C2×2 be such that P |0〉 =
√
α |0〉+

√
β |1〉. Verify that

(P−1 ⊗ 1n) · c1-V · c0-U · (P ⊗ 1n) (198)

is of the form W .

The remainder of the lecture went over the exposition of qubitization in Chapter 27.3 of [AMC]. Qubitization is a technique
that allows us to lift the 1-dimensional analysis above to an arbitrary-dimensional analysis.
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Lecture 25 (unused)

Dual polynomials. Let f : {−1, 1}n → {−1, 1} and ε ≥ 0.
The approximate degree of f is the minimal degree of a (multilinear)9 polynomial p ∈ R[x1, . . . , xn] such that |p(x) −

f(x)| ≤ ε for all x ∈ {−1, 1}n.

A dual polynomial witnessing d̃egε(f) ≥ d is a multilinear polynomial φ ∈ R[x1, . . . , xn] such that

1. (High correlation)
∑
x∈{−1,1}n f(x)φ(x) > ε.

2. (High phd) phd(φ) ≥ d, where phd(φ) is the pure-high-degree of φ, i.e., the minimum degree of a monomial of φ.

3. (Normalization)
∑
x∈{−1,1}n |φ(x)| = 1.

Claim 1. d̃egε(f) ≥ d if and only if there exists a dual polynomial witnessing d̃egε(f) ≥ d.

9The approximate degree does not change whether we include “multilinear” here or not
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Additional unused material

Deciding regular languages. A key algorithmic idea in [Aaronson, Grier, Schaeffer’18].
Regularn : {0, 1, 2}n → {0, 1}. f(x) = 1 iff x contains a substring of the form 10j1, where 0j means a continuous string of

j zeros and j ∈ {0, 1, 2, . . . }. Example n = 4: 1102 (1), 1001 (1), 1021 (0), 2121 (0).

Proposition 20. Q(Regularn) = O(
√
n log3(n)).

Proof. [Idea: guess the length of the target substring and verify.] (Will be less careful with failure probabilities,
minor details like divisibility, using ceiling/floor, etc.)

Suppose there is a substring of form 10j1 of length l ∈ [2i, 2i+1) – call such a substring “good”. Then split the input
into disjoint blocks of length 2i/2 each. Then, the substring must cover some block in its entirety. Given the index

k ∈ {1, . . . ,K := 2n/2i} of a block Bk can decide if Bk is covered by a good substring using O(
√

2i) quantum queries as
follows:

1. Check if Bk is all zeros. This is the same as computing OR2i/2 and uses O(
√

2i) queries.

2. If yes, find the first 1 to the right of Bk within distance 2i. Use an exponentially increasing sequence: see if the first 2j

positions contains all zeros, stop when not and backtrack and binary search. Uses O(
√

2i log(2i)) = O(i
√

2i) queries.
If 1 not found, then output 0. Else check if the positions from the right-boundary of Bk to the position of the first 1
all contain zeros. This costs O(

√
2i)

3. Repeat the last step on the left of Bk.

We can use the above algorithm A, repeated log(K) times and taking majority vote to suppress errors, to instantiate
essentially error-free quantum queries to a K-bit string y where bit k ∈ [K] indicates whether Bk is covered by a good
substring. (See paragraph 3 of the introduction of [Høyer, Mosca, de Wolf’03], the rest of this paper explains why we don’t
actually need to repeat log(K) times.)

Then we compute ORK(y). This takes O(
√
K) queries to y. Therefore the number of queries is O(i

√
2i log(K)

√
K) =

O(i
√
n log(n)). Doing this for i = 1, 2 . . . , log(n) (to cover all possible lengths of a 10j1 substring) costs order

√
n log(n)

log(n)∑
i=1

i = O(
√
n log3(n)). (199)

Remark 18. The above proof gives an example of a quantum composition theorem. Suppose f1, . . . , fK : D ⊆ Σn → {0, 1}
and ORK : {0, 1}K → {0, 1}. Then can define ORK ◦(f1, . . . , fK) : DK ⊆ ΣKn → {0, 1} by

ORK ◦(f1, . . . , fK)(x11, . . . , x1n, x21, . . . , x2n, . . . , xK1, . . . , xKn)

= ORK(f1(x11, . . . , x1n), . . . , fK(xK1, . . . , xKn)).
(200)

Then Q(ORK ◦(f1, . . . , fK)) = O(
√
K ·maxi∈[K]Q(fi)). In fact, a stronger statement is possible:

Q(ORK ◦(f1, . . . , fK)) ≤ O
(( K∑

i=1

Q(fi)
2
)1/2)

. (201)

Minimum finding. (Basis for many applications of quantum computing in optimization.)

MINn : {0, 1, . . . ,m− 1}n → {0, 1, . . . ,m− 1}; MINn(x) = min
i∈[n]

xi. (202)

Note when m = 2, this is the same as the ORn function.
Naive method: Binary search over {0, 1, . . . ,m− 1}. Pick t = m/2, decide if there is an i such that xi ≤ m/2– this takes

O(
√
n) quantum queries (essentially the same as computing ORn). If yes then pick t = m/4, if not then pick t = 3m/4 and

continue in the same way. Quantum query complexity is O(log(m)
√
n).

But in fact can remove dependence on m by essentially classical tricks.

Proposition 21. Q(MINn) ≤ O(
√
n log(n) log log(n)).

Proof. 1. Quantum part:

Claim 2. There exists a quantum query algorithm A parametrized by t ∈ [m] and R ∈ N that queries x ∈ {0, 1, . . . ,m−
1} and with probability ≥ 1− 1/3R:
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(a) outputs t if t = mini∈[n] xi

(b) else outputs10 an i chosen uniformly at random from {i | xi < t} except with failure probability ≤ 1/3R

The quantum query complexity of A is O(R
√
n).

Proof sketch. Part (a) is essentially the same as computing ORn because can instantiate a query to the input to ORn

using a query to x in the obvious way. Repeat this O(R) times to get failure probability ≤ 1/310R. If ORn is computed
to be 0, then output 1. If ORn is computed to be 1, then continue.

Create the uniform superposition

1√
n

n∑
i=1

|i〉 = α
∑
i|xi≤t

|i〉+ β
∑
i|xi<t

|i〉 , (203)

and we can use amplitude amplification to amplify the second part so that |β|2 becomes at least 2/3 using O(
√
n)

queries to x – note |β|2 is ≥ 1/n. (This part is sketchy as cannot apply amplitude amplification directly since when
|β|2 ≥ 1/n, we do not know what it is, the idea is to assume different values of |β| (an exponentially increasing
sequence) and choosing k in Proposition 15 appropriately, then one of these trials will return an i uniformly at random
from {i | xi < t} probability ≥ 2/3; note xi < t is a verifiable condition – see Theorem 3 in quantum amplification
paper [BHMT’00]. Repeat this O(R) times to get failure probability to be < 1/310R.

2. Classical wrapper:

Suppose there is zero failure probability in the first claim (will later set R large enough such that this is essentially
true). Input x ∈ {0, 1, . . . ,m − 1}n. Given t ∈ [m], let St := {i ∈ [n] | xi < t}. Let k ∈ N. Consider the following
algorithm. The commands in square brackets are only used for the analysis.

Initialize t = m. For i = 0, . . . , k, do:

(a) Output t if t = mini∈[n] xi. [Set Bj = ∅ for all j ≥ i.] Else sample i← St. (I use ← to mean chosen uniformly at
random.) [Set Bi = St.]

(b) Classically query xi. Set t = xi.

Analysis. If Bk = 0, then the algorithm is successful.

For i ∈ {0, 1, . . . , k}, let Yi := |Bi| and yi := E[Yi]. Write x(Bi) := {xj | j ∈ Bi} as a multiset. Note Yi is a random
variable with Y0 = n and y0 = n. Observe that, by definition, if Yk = 0, then the algorithm succeeds in outputting
mini∈[n] xi.

For z ∈ {1, 2, . . . , n}, we have

E[Yi+1 | Yi = z] =
1

z

( ∑
j∈x(Bi)

((rank of j in x(Bi))− 1)
)
≤ 1

z

z∑
j=1

(j − 1) =
z − 1

2
≤ z

2
, (204)

where the first inequality is tight if x(Bi) contains all distinct elements. [Example: suppose Bi = {1, 2, 3, 4, 5} and
x(Bi) = {1, 3, 6, 7, 8}, then E[Yi+1 | Bi] = 1

5 (0 + 1 + 2 + 3 + 4) = 1
5 = 1

5
1
24(4 + 1) = 2; suppose x(Bi) = {1, 3, 3, 3, 8},

then E[Yi+1 | Bi] = 1
5 (0 + 1 + 1 + 1 + 4) = 7/5 < 2.]

But we also have
E[Yi+1 | Yi = 0] = 0 (205)

by definition.

Therefore, for all z ∈ {0, 1, . . . , n},
E[Yi+1 | Yi = z] ≤ z

2
. (206)

Therefore

E[Yi + 1] =

n∑
z=0

Pr[Yi = z] E[Yi+1 | Yi = z] ≤ 1

2

n∑
z=0

Pr[Yi = z]z =
1

2
E[Yi], (207)

where the first equality uses the Law of Total Expectation and the last equality uses the definition of expectation.

Therefore, yi+1 ≤ yi/2. Since y0 = n, we have yi ≤ n/2i.
Therefore, by Markov’s inequality11 Pr[Yk ≥ 1/2] ≤ 2 E[Yk] = 2n/2k. Therefore, since Yk can only take non-negative
integer values, if k = O(log(n)), then this probability can be made to be smaller than 1/100.

10Let T := {i | xi < t}. If |T | > 0, then ∀i ∈ T , Pr[A(t) = i] = (1− 1/3R)/|T |+ 1/3Rqi for some qi ∈ [0, 1]; if T = 0, then Pr[A(t) = i] = 0.
11Suppose X is a random variable that only takes non-negative values. Then, for all a > 0, Pr[X > a] ≤ E[X]/a.
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Now, let’s consider the failure probability. Since there are k = O(log(n)) uses of the quantum algorithm in Claim 2.

Pr[∀i ∈ {0, 1, . . . , k}, no failure at iteration i]

=1− Pr[∃i ∈ {0, 1, . . . , k}, failure at iteration i ] Pr[A] = 1− Pr[Ac]

≥1−
k∑
i=0

Pr[failure at iteration i] union bound, Pr[A1 ∪A2] ≤ Pr[A1] + Pr[A2]

≥1− (k + 1)/3R Claim 2

≥1− 1/100 by choosing R = log log(n).

The proposition follows: each iteration costs O(
√
n log log(n)) and there are O(log(n)) iterations, multiply.

Remark 19. In fact, can remove the log factors by a more careful analysis so query complexity is O(
√
n). See [Dürr-Høyer’96].
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