
Candidate Project Topics

In the following, [AMC] refers to lecture notes of Andrew M. Childs, available here, and the
references therein. A single numbered paragraph should be enough scope for one project. As a
general rule, more points will be given for depth than for breadth.

The references below are generally to arXiv versions of these papers. You can sometimes
find videos of talks on these papers by Googling their titles: videos sometimes convey the key
ideas more quickly. You may use the references below as guides to the topic but write about
other works (not appearing below) on the topic if you find them more interesting or accessible.

More commentary on a topic does not mean I prefer that topic more. It is also entirely okay
to pursue a topic outside this list; though, in that case, I encourage you to discuss the topic
with me first (by email or during office hours). If you’d like more information about any topic
from below, please let me know.

Deadlines: all submissions are to be made on Gradescope.

1. 23:59pm, Oct 14: submit proposal.

2. 23:59pm, Nov 11: submit progress report.

3. 23:59pm, Dec 6: submit final paper.

Details of what each submission should entail are specified on the course webpage.

Quantum circuit synthesis

1. Solovay-Kitaev theorem. This theorem shows that arbitrary unitaries can be approximately
synthesized using a sequence of elementary quantum gates chosen from any finite set satisfying
mild conditions. For an accessible proof of this result, see [AMC, Section 2]. Solve Problem 1
here to understand why the approximation can also be found efficiently. Recent developments
on this topic include [Kuperberg, 23] and [Bouland and Giurgicǎ-Tiron, 21].

2. Clifford + T synthesis. In practice, unitaries are often synthesized using Clifford + T gates.
See [AMC, Section 3].

Quantum algorithms

I chose the following topics for their potential for super-quadratic quantum speedups. There are
significantly more quantum algorithms that yield sub-quadratic speedups. While algorithms of the
latter type often involve many beautiful ideas and their theoretical speedup is more secure, they
may be much further away from real-world applications (say, ten years or more, see [Babbush et
al.]). We will also cover some of them in class. Therefore, I decided to omit them in the following.

1. Quantum algorithms for algebraic problems. Study one or two sections from [AMC, Chapter
2] that look interesting to you. That chapter overlaps with [Childs and van Dam, 08].

2. Quantum algorithms for lattice problems. New cryptographic standards for online security rest
on the hardness of lattice problems – see NIST announcement from Aug 13, 2024. Therefore,
you will become the next Peter Shor if you find an efficient quantum algorithm for solving
lattice problems. A known approach goes via the dihedral hidden subgroup problem [Regev,
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03]. Notable recent works include [Liu, 23], [Eldar and Hallgren, 22] (this work has received
significant pushback, see, e.g., StackExchange post), [Chen, Liu, and Zhandry, 21], [Cramer,
Ducas, Peikert, and Regev, 16] (motivated by work of the British spy agency). A very recent
attempt to break lattice cryptography that failed: [Chen, 24], what went wrong?

3. Improved quantum algorithm for factoring. We will cover Shor’s algorithm in class, which
factors an n-digit number by using a quantum circuit involving ∼ n2 gates. [Regev, 23] found
an improved algorithm that uses a quantum circuit involving only ∼ n1.5 gates. [Ragavan
and Vaikuntanathan, 23] shows a further space saving.

4. Exponential quantum speedups for graph problems. [Childs, Cleve, Deotto, Farhi, Gutmann,
and Spielman, 02] shows that a quantum algorithm can find the “exit” in a maze-like graph
much faster than any classical algorithm. More recently, [Childs, Coudron, and Gilani, 22]
studies whether that algorithm can also output the path it took while [Balasubramanian, Li,
and Harrow, 24] shows how that algorithm can be generalized. [Li and Tong, 24] shows how
a quantum algorithm can find a path between some vertices in some graphs fast. [Ben-David,
Childs, Gilyén, Kretschmer, Podder, and Wang, 20] shows that the input data structure of
the graph is crucial to the question of exponential quantum speedup.

5. Quantum algorithms for ground states. The ground state of a quantum system is its lowest
energy state and can be used to understand key properties of the system. [Lin and Tong, 20]
describes a near-optimal algorithm for preparing the ground state given an approximation
to it (so-called guiding state). [Gharibian and Le Gall, 21] studies this problem from a
computational complexity perspective. If you’re not given a guiding state, then this problem
is hard (QMA-hard) even for a quantum computer. But there are still things you can do,
see, e.g., [Chen, Huang, Preskill, and Zhou, 23], [Cubitt, 23]. Is there a way to claim large
quantum advantage without going via BQP-completeness? This is a tricky question since
classical algorithms can be very good too, see, e.g., [Chan, 24] and [Lee et al., 22].

6. Quantum algorithms for Gibbs states. A quantum system rests in its ground state at temper-
ature T = 0. For T > 0, the system rests in the so-called Gibbs state. Latest works include
[Bakshi, Liu, Moitra, and Tang, 24] and [Rouzé, Stilck França, and Alhambra, 24] (covered
in Quanta article).

7. Quantum simulation algorithms. These are algorithms that simulate the time evolution of
quantum systems themselves. This was the original application envisaged for quantum com-
puters by [Feynman, 82]. This video gets you up to speed about recent developments.

8. Quantum algorithms for differential equations. Quantum simulation algorithms evolve a quan-
tum state following the Schrödinger equation iℏ d

dt |ψ⟩ = H |ψ⟩. Quantum algorithms can also
be used to perform evolution under more general differential equations. Some notable recent
works include [An, Liu, and Lin, 23], [Babbush, Berry, Kothari, Somma, and Wiebe, 23], [Liu
et al., 20]. Also see [Linden, Montanaro, and Shao, 20] for commentary on the caveats of
claiming large quantum speedup for some quantum algorithms for differential equations.

9. Yamakawa-Zhandry problem. [Yamakawa and Zhandry, 22] describes a new type of problem
that admits a provable exponential quantum advantage in the query model. The problem
was originally motivated as a “proof-of-quantumness” but has since been related to problems
in optimization [Jordan et al., 24] and complexity theory [Jain, Li, Robere, and Xun, 24].
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10. Optimization via quantum dynamics. Classical optimizers often face trouble when the opti-
mization landscape has many local minima. Recent proposals for quantum optimizers seek
to overcome this issue by using quantum effects such as quantum tunneling. See, e.g., [Liu,
Su, and Li, 23], [Leng, Zheng, and Wu, 23] and [Leng, Hickman, Li, and Wu, 23]. Also see
[Zhang and Li, 21] (not quantum) and [Zhang, Leng, and Li, 21] for escaping saddle points.

11. Quantum neural networks, or variational quantum algorithms. Despite early promise, there
is growing pessimism surrounding quantum neural networks. See [Cerezo et al., 24] and
[Anschuetz, 24] that summarize the current situation. Is there a way around the pessimism?

Limitations of quantum algorithms in the query model

1. Total Boolean functions. A total Boolean function is a function of the form f : {0, 1}n →
{0, 1}. Using a beautiful pure math result [Huang, 19], [Aaronson, Ben-David, Kothari, Rao,
and Tal, 20] showed D(f) ≤ O(Q(f)4) for such f . This is tight by [Ambainis, Balodis, Belovs,
Lee, Santha, and Smotrovs, 15]. Of course, the previous inequality implies R(f) ≤ O(Q(f)4)
but whether this is tight is an open problem – see Problem 4 of [Aaronson, 21].

2. Aaronson-Ambainis conjecture. Let f : D ⊆ {0, 1}n → {0, 1}. This conjecture says that DDTs
can simulate quantum query algorithms on most inputs x ∈ D unless D is much smaller than
{0, 1}n. It can be interpreted as saying that “there can be quantum advantage only for very
special problems”. The conjecture can be reduced to a purely mathematical result about
polynomials. See [Aaronson and Ambainis, 14]. Recent progress on this conjecture includes
[Gutiérrez, 23] and [Bansal, Sinha, and de Wolf, 22].

3. k-distinctness. This problem asks whether a list contains k locations that contain the same
symbol. It lies at the frontier of quantum lower-bound techniques [Bun, Kothari, and Thaler,
17]. You may also study the upper-bound side as part of the project, see, e.g., [Jeffery and
Zur, 22] and [Belovs, 12].

4. Recording queries method. There are two prevailing methods for proving worst-case quantum
query complexity lower bounds: the polynomial and adversary methods. (I plan to cover
these in class.) More recently, [Zhandry, 18] introduced an elegant method called the record-
ing queries method that works particularly well for proving average-case quantum query lower
bounds, which is particularly relevant for cryptography. This method has been further devel-
oped by, e.g., [Majenz, Malavolta, and Walter, 24], [Beame, Kornerup, and Whitmeyer, 24],
[Hamoudi and Magniez, 20].

Classical simulation of quantum circuits and dequantization of quantum algorithms

1. Classical simulation of quantum circuits. Special classes of quantum circuits can be sim-
ulated efficiently classically, e.g., those with Clifford and few T gates [Bravyi and Gosset,
16], matchgates [Jozsa and Miyake, 08], low entanglement [Jozsa and Linden, 02], low tree-
width [Markov and Shi, 05], noisy and random [Aharonov, Gao, Landau, Liu, and Vazirani,
22], shallow [Bravyi, Gosset, and Liu, 23], [Coble and Coudron, 20], [Bravyi, Gosset, and
Movassagh, 19], etc. Investigate a few of these. Can some of them be combined?

2. Stabilizer rank. Motivated by a particular simulation algorithm for Clifford + T circuits
[Bravyi and Gosset, 16], significant research has been devoted to lower bounding the stabilizer
rank of magic states. See blog post and [Bravyi, Browne, Calpin, Campbell, Gosset, and
Howard, 18]. The latest result on this question is [Mehraban and Tahmasbi, 24].
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3. Dequantization of quantum algorithms. Instead of trying to classically simulate a quantum
algorithm gate by gate, we can simply try to obtain the same output as that algorithm. This is
known as dequantization. There have been several notable dequantizations; perhaps the most
notable is [Tang, 18]. (The author, Ewin Tang, wrote this paper when she was 18.) That paper
led to many subsequent dequantizations of quantum machine learning (QML) algorithms
relying on Quantum Random Access Memory (QRAM). How does all this square with the
BQP-completeness of the proto-typical QML algorithm, the quantum linear systems (or HHL)
algorithm of [Harrow, Hassidim, and Lloyd, 09]? You may instead study dequantization of
non-QML algorithms, e.g., recently [Begušic, Gray, and Chan, 24] claims to dequantize a
quantum algorithm for physics in [Kim et al., 23]. Many so-called “quantum supremacy”
algorithms have also been dequantized.

Quantum cryptography

1. Quantum money. A physically unclonable form of money, which was the first application of
quantum in cryptography. See video for an introduction. (I also plan to cover this later in
class.) A key open problem is to construct a publicly verifiable form of quantum money, see,
e.g., [Zhandry, 24], [Liu, Montgomery, and Zhandry, 22], [Aaronson and Christiano, 12].

2. Quantum randomness generation. Classically, we only know how to generate pseudo-random
bits. But quantumly, the CHSH game can be used to generate truly random bits. See popular
article and [Miller and Shi, 15].

3. Device-independent quantum key distribution (QKD).We will discuss the BB84 QKD protocol
in class, but what if you’re paranoid and don’t trust the devices you’re using? [Jain, Miller,
and Shi, 18] and [Vazirani and Vidick, 12] (in which the CHSH game again appears).

4. Classical control of quantum devices. As weak classical beings, how can we trust the output
of a powerful quantum computer? Using cryptography! [Mahadev, 18]: associated Quanta
article and overview. You could also focus on a weaker task known as “proof-of-quantumness”
in which you just want to trust that the output was generated by something quantum. See,
e.g., [Alnawakhtha, Mantri, Miller, and Wang, 24], [Kalai, Lombardi, Vaikuntanathan, and
Yang, 22], [Kahanamoku-Meyer et al., 21] – all involve the CHSH game.

5. Certified deletion. A way for a cloud computer to prove to you that it deleted your informa-
tion. This is impossible classically as the cloud computer could copy your information and
just delete the original. But quantumly, we have the no-cloning principle. See, e.g., work by
Bartusek, [Broadbent and Islam, 20], [Miller and Fu, 17].

6. Minimal assumptions in quantum cryptography. The minimal assumption for cryptography
in a classical world is one-way functions. It is currently unclear what the answer should be
in the quantum world that we actually live in. See, e.g., Quanta article, [Brakerski, Canetti,
and Qian, 22], [Kretschmer, 21], [Ji, Liu, and Song, 17]

Additional topics

I may add more to these. You can come back to the Overleaf file later to check.

1. MIP∗ = RE. This is a landmark result in quantum complexity theory by [Ji, Natarajan,
Vidick, Wright, and Yuen, 22]. See blog posts 1, 2 (also 2.1 about preceding work [Natarajan
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and Wright, 19]), and 3. First, understand the meaning of the result. Then understand a
high-level overview of the proof strategy. Then dig into the details of one of the key proof
components – the first blog post has some pointers on what these are.

2. ∃O s.t. BQPO ⊊ PHO. Another landmark result in quantum complexity theory that is “closer
to Earth” and easier to digest than the previous one. First proven in [Raz and Tal, 18]. A
simplified proof: [Wu, 20]. Coverage: Quanta article, blog posts 1 and 2.

3. Classical learning of quantum states. Given copies of a quantum state, what’s the most
efficient way to learn some description of it? See survey by [Anshu and Arunachalam, 23].
Some open questions in that survey have since been resolved, see, e.g., [Bakshi, Liu, Moitra,
and Tang, 23].

4. Classical learning of quantum channels. Like the previous topic but for quantum channels.
Recent work includes, e.g., [Huang and Liu et al., 24] and [Haah, Kothari, O’Donnell, and
Tang, 24].

5

https://arxiv.org/abs/1904.05870
https://arxiv.org/abs/1904.05870
https://scottaaronson.blog/?p=4512
https://eccc.weizmann.ac.il/report/2018/107/
https://arxiv.org/abs/2007.02431
https://www.quantamagazine.org/finally-a-problem-that-only-quantum-computers-will-ever-be-able-to-solve-20180621/
https://scottaaronson.blog/?p=3827
https://windowsontheory.org/2018/06/17/on-the-raz-tal-oracle-separation-of-bqp-and-ph/
https://arxiv.org/pdf/2305.20069
https://arxiv.org/abs/2310.02243
https://arxiv.org/abs/2310.02243
https://arxiv.org/abs/2401.10095
https://arxiv.org/abs/2302.14066
https://arxiv.org/abs/2302.14066

