
CPSC 436Q: Homework 1

Due on Gradescope by 23:59pm on September 27, 2024

Rules

1. Please try to solve the problems yourself first. If you get stuck, you may consult any resources (books, internet, peers,
office hours, etc.) for solutions. Provided you acknowledge these resources, no marks will be deducted. However, you
must write up your own solution independently, using your own words.1

2. Please write legibly, work that is illegible will be marked as incorrect. Latex is strongly recommended for legibility. I
also recommend using [Overleaf] if you’re new to Latex. Please visit [link] to get the Latex code for this document. (To
edit the code, you should copy it into a new project and edit it there.)

3. All answers should be justified.

4. The total number of points for this homework is 28.

5. If you spot any mistakes, please email me at wdaochen@cs.ubc.ca. Any corrections will be announced on Piazza.

Homework

1. Prerequisites. [You should be able to do the following questions fairly easily without any help. If not, it is likely that
you will struggle with this class. Probability prerequisites: you should be comfortable with the material in Chapters 17,
18, and 19 of [this textbook]; in particular, Rule 17.5.4 (the union bound), Rule 18.5.1 (law of total probability), Lemma
19.4.2 (expectation of indicator random variables), and Corollary 19.5.3 (linearity of expectation). If you haven’t seen
this material before, please note that it is not difficult, and you should be able to self-learn it in a few days.]

(a) (2 points) Show that for all n ∈ N and every Hermitian matrix A ∈ Cn×n, the equality ∥A2∥ = ∥A∥2 holds.
(Throughout this class, the notation ∥ · ∥ is reserved for the spectral norm, i.e., maximum singular value.)

(b) (2 points) Is part (a) still true if we drop the word “Hermitian”? (If true, show it. If false, give a counterexample.)

(c) Let n ∈ N be even. In class, we briefly discussed a randomized algorithm for determining whether an n-bit input
x = x1 . . . xn is of form (1) the all-zeros bitstring, or form (2) half of the bits are 0 and half are 1. It is promised
that x is either of form (1) or (2). We will analyze that algorithm more carefully in this question. Recall the
algorithm is described as follows for some k ∈ N with k ≤ n:

i. Choose i1, . . . , ik each independently and uniformly at random from [n]. (For a ∈ N, [a] denotes the set
{1, . . . , a}.)

ii. Examine bits xi1 , . . . , xik . If any examined bit is 1, output “form (2)”, else output “form (1)”.

(1 point) Suppose the input x is actually of form (1), what is the success probability of the algorithm, i.e., the
probability of the algorithm outputting “form (1)”.
(1 point) Suppose the input x is actually of form (2), what is the success probability of the algorithm, i.e., the
probability of the algorithm outputting “form (2)”. Write your answer as a function of k.

2. Deterministic complexity of the NAND tree. We sketched in class that the randomized complexity of the depth-h
NAND tree on n := 2h input bits is O

(
((1 +

√
33)/4)h

)
= O(n0.754).

We now consider how well deterministic algorithms perform for this problem. Suppose the n input bits to the NAND
tree are x1, . . . , xn (located arbitrarily at the n leaves of the tree).

(2 points) Suppose a deterministic algorithm examines bits x1, x2, . . . , xn−1. Show that there exists an assignment of
values to those bits (e.g., x1 = 0, x2 = 1, . . . , xn−1 = 0) such that the output value of the NAND tree, given this
assignment, still changes depending on whether the unexamined bit xn is 0 or 1.

This argument shows that the deterministic complexity of the NAND tree on n input bits is at least n because a
deterministic algorithm has to examine all n bits to know for sure what the output of the NAND tree is.2

1GenAI tools like ChatGPT can occasionally solve these problems correctly. Like other resources, if you use it, please verify and understand its
solution first. Also remember, you will not have access to any resources other than a pen in the final exam.

2More precisely, it shows that the deterministic query complexity of the NAND tree is n. We will study query complexity later in the class.
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3. Eigenvalues and eigenvectors. Let θ ∈ R and A ∈ C2×2 be defined by

A :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (1)

(a) (4 points.) Calculate the eigenvalues and eigenvectors of A. Therefore, write A in the form A = UDU†, where
U ∈ C2×2 is unitary and D ∈ C2×2 is diagonal.

(b) (2 points.) For k ∈ N, show that Ak = UDkU† and use the expression on the right-hand side to calculate Ak,
simplifying your answer as much as possible.

4. Kronecker product. [Hint: it’s easier to do the following problems if you use Dirac notation as much as possible.]

(a) (2 points.) Let A,B ∈ Cd×d and u, v ∈ Cd. Show that

(A⊗B)(u⊗ v) = Au⊗Bv. (2)

You are allowed to use any property of the Kronecker product listed in https://en.wikipedia.org/wiki/

Kronecker_product, except “the mixed-product property” — since that is stronger than what you’re being asked
to show.

[Hint: first show eq. (2) for A = |i1⟩⟨j1|, B = |i2⟩⟨j2|, u = |k⟩ and v = |l⟩ where i1, j1, i2, j2, k, l ∈ {1, 2, . . . , d},
then use other properties of the Kronecker product. (Recall that |1⟩ , |2⟩ , . . . , |d⟩ ∈ Cd denote the computational
basis vectors.)]

(b) (2 points.) Define |ψ⟩ ∈ Cd ⊗ Cd by

|ψ⟩ := 1√
d

d∑
i=1

|i⟩ |i⟩ . (3)

Let 1d ∈ Cd×d denote the identity matrix. Show that for any A ∈ Cd×d, we have

A⊗ 1d |ψ⟩ = 1d ⊗A⊤ |ψ⟩ , (4)

where ⊤ denotes the transpose.

(c) (2 points.) Let |u1⟩ , . . . , |ud⟩ ∈ Cd be an arbitrary orthonormal basis. Show that

|ψ⟩ = 1√
d

d∑
i=1

|ui⟩ |u∗i ⟩ , (5)

where |u∗i ⟩ denotes the (entry-wise) complex conjugate of |ui⟩.

5. Quantum teleportation.

Let |ψ⟩ ∈ C2 ⊗ C2 ⊗ C2 = C8 be defined by

|ψ⟩ = 1√
2
(α |0⟩+ β |1⟩)(|00⟩+ |11⟩), (6)

where α, β ∈ C are such that |α|2 + |β|2 = 1.

Now define the following 2-qubit states

|ψ1⟩ :=
1√
2
(|00⟩+ |11⟩), (7)

|ψ2⟩ :=
1√
2
(|00⟩ − |11⟩), (8)

|ψ3⟩ :=
1√
2
(|01⟩+ |10⟩), (9)

|ψ4⟩ :=
1√
2
(|01⟩ − |10⟩). (10)

Then, for all i ∈ [4], define Πi := |ψi⟩⟨ψi| ⊗ 12 ∈ C8×8.

[Hint: it’s easier to do the following problems if you use Dirac notation as much as possible.]

(a) (2 points) Show that |ψi⟩ and |ψj⟩ are orthogonal for all i ̸= j.
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(b) (2 points) Using part (a), or otherwise, show that M := {Π1,Π2,Π3,Π4} is a [4]-outcome projective measurement
on C8.

(c) (4 points) For each i ∈ [4], when we measure |ψ⟩ using M, what is the probability that the measurement outcome
is i? Given the measurement outcome is i, compute the state |ψ′⟩ that |ψ⟩ changes to.

[If you did this question correctly, you should find that an i-dependent version of the state 1√
2
(α |0⟩ + β |1⟩) will

be transferred (or “teleported”) from the first (left-most) qubit to the last (right-most) qubit in eq. (6) following
measurement M. We can imagine the first two qubits as belonging to Alice who lives on Earth and the last qubit as
belonging to Bob who lives in the Andromeda Galaxy. Then M can be implemented by Alice locally due to its tensor
product form. Unfortunately, the state teleported depends on i, so this does not actually allow Alice to communicate
to Bob instantaneously.]
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