
Lecture 10

When designing quantum query algorithms, we’d like to do the following two types of operations

1. operations appearing in randomized query algorithms

2. intermediate measurements: make a measurement after some quantum operations (i.e., unitaries), later operations
depend on the outcome of those measurements, and so on.

Let’s see that they’re already captured by our definition.

Fact 1. Quantum query algorithms can efficiently simulate randomized query algorithms. In particular Q(f) ≤ R(f) for
any f . Reference: Section 2.3.3 of [de Wolf thesis].

Proof sketch. We will see how a quantum query algorithm can simulate a DDT first by way of an example: consider the
obvious depth-2 DDT T that computes (¬x1 ∧ x2) ∨ (x1 ∧ x3) with 1 labelling the root.

We will use the following

Lemma 2. Suppose g : [a]→ [b], then there exists a unitary Ug (in fact permutation matrix) acting on the space Ca⊗Cb = Cab
(Ug ∈ Cab×ab) such that

Ug |i〉 |1〉 = |i〉 |g(i)〉 (67)

for all i ∈ [a].

Proof. Define Ug by
Ug |i〉 |j〉 = |i〉 |(j + g(i)− 1) mod b〉 (68)

Eq. (68) completely defines Ug, check that the definition implies Ug is unitary – in fact, a permutation matrix.

Let I : {0, 1} → {2, 3} be defined by I(0) = 2 and I(1) = 3. I maps the bit value of x1 to the index that is queried next.
Let h : {0, 1} × {1, 2, 3} × {0, 1} → {0, 1} be defined by

h(0, 2, 0) = 0, h(0, 2, 1) = 1, h(1, 3, 0) = 0, h(1, 3, 1) = 1. (69)

We have defined h such that h(a, I, b) is defined to be the value that T outputs if x1 = a, I is the index of the variable
queried next, and xI = b.7

Register dimensions C3 ⊗ C2 ⊗ C3 ⊗ C2 ⊗ C2:

|1〉 |0〉︸ ︷︷ ︸
query registers

|1〉 |0〉 |0〉︸ ︷︷ ︸
workspace registers

Ox7→ |1〉 |x1〉 |1〉 |0〉 |0〉
UI7→ |0〉 |x1〉 |I(x1)〉 |0〉 |0〉 notation follows fact (*)

Ox7→ |0〉 |x1〉 |I(x1)〉 |xI(x1)〉 |0〉
Uh7→ |0〉 |x1〉 |I(x1)〉 |xI(x1)〉 |h(x1, I(x1), xI(x1))〉 notation follows fact (*)

= |0〉 |x1〉 |I(x1)〉 |xI(x1)〉 |T (x)〉 definition of h

where the
A7→ notation means application of matrix A (suitably tensored with identity matrices), and the last line uses the

definition of h. Then measuring using {Π0 := 136⊗|0〉〈0|,Π1 := 136⊗|1〉〈1|} gives outcome T (x) (with probability 1).
What about RDTs? Recall an RDT T is a distribution (pi, Ti)

K
i=1 over DDTs. We have seen how Ti can be simulated by

a quantum query algorithm Ai for each i. Suppose Ai is specified by unitaries {U ij}j=0,...,d. Then the RDT can be simulated
by a quantum query algorithm A that starts with the state

|ψ0〉 := |1〉 ⊗
K∑
i=1

√
pi |i〉 . (70)

Then for j ∈ {0, 1, . . . , d}, Uj of A is defined to be

Uj :=

K∑
i=1

U ij ⊗ |i〉〈i|. (71)

7There was a question in class about why h wasn’t defined on domain {0, 1}×{2, 3}×{0, 1} instead. My answer in class about unitaries needing
to not depend on the input is not the correct answer. The correct answer was Rain’s answer during class: to make the example more clearly
generalizable. For this particular DDT, we could have alternatively used the domain {0, 1} × {2, 3} × {0, 1}. But if a different DDT queries, e.g.,
variables 1 or 2 at the second step, then we would need to replace {2, 3} by {1, 2}, etc.. We can avoid this change of domain when simulating each
new DDT by using {1, 2, 3}.

18

https://homepages.cwi.nl/~rdewolf/publ/qc/phd.pdf


The measurement of A is still {Π0 := |0〉〈0|,Π1 := |1〉〈1|} (tensored with identities so that the Πbs only act non-trivially
on the single register that contains {Ti(x) | i ∈ {1, . . . ,K}}.

The state of the quantum query algorithm before measurement is of the form

K∑
i=1

√
pi |ψi〉 |Ti(x)〉 |i〉 , (72)

where |ψi〉 represent some “junk” state (in the DDT example above where K = 1, it’s |0〉 |x1〉 |I(x1)〉 |xI(x)〉).)
Performing the measurement gives 0 with probability

∥∥∥ K∑
i=1

√
pi |ψi〉 (|0〉〈0| · |Ti(x)〉) |i〉

∥∥∥2

=

K∑
i=1

pi 1[Ti(x) = 0] = Pr[T (x) = 0], (73)

which shows that the quantum query algorithm simulates the output of the RDT T (Supposing the codomain of f is
Γ = {0, 1}.). The first equality is an exercise.

19


