Lecture 14

Simon’s problem. Let n,k € N be such that n = 2¥. So that {0,1,...,n — 1}" bijects with {0,1,...,n — 1}{071}k and be
identified under a fixed bijection. In the following, we will switch between these two notations.

Simon,,: D := DoUD; C {0,1,...,n—1}" — {0,1}, (87)

where
Do ={z € {0,1,...,n— 1101 |vs t € {0,1}F s £t = a(s) £ 2()}, (88)
Dy ={z €{0,1,...,n—1}O1" | 3a € {0,1}F — {0*},Vs,t € {0,1}*, 2(s) = 2(t) « s {t,t@a}}, (89)

and Simon,,(z) =0 <= x € Dy.
Proposition 7. Q(Simon,) = O(log(n)).
We need some lemmas.
Lemma 3. Let x € {0,1}* and |z) = |z1) ... |zx) be a k-qubit state. Then

HO |z) = —— (—1)"]y). (90)
vk ye%}’“

where H®* .= H® ---®@ H (k times) and x -y := Zle TilYi-

Lemma 4. Let K € N. Suppose 21, ...,zx < F5. Then the probability that the dimension of the span of the z;s, i.e., the
dimension of the subspace
Vi={aiz1 +- +agzk | a1,...,ax € Fo} <F5 (91)

is k is at least 1 — 28— K

Lemma 5. Let K € N and 0 # a € F§. Let z1,...,zx € F§ (arbitrary) be such that Vi € [K], a-z; =0 mod 2. Then the
dimension of the span of the z;s is at most k — 1.

With the lemmas in place, we can now prove
Proof of [Proposition 7. Create the state using 1 query to x € D:
- ( 92)
T 2 e, (
se{0,1}*
Measure the second register in the computational basis. There are two cases depending on whether x € Dy or x € D;.

1. ¢ € Dy. Obtain a value yo € {0,1,...,n — 1} (with probability 1/n but the precise value doesn’t matter for the later
analysis) and the state becomes

Iso) [90) (93)

where x(sg) = yo.

2. z € D;. Obtain a value yo € x({0, 1}*) (with probability 2/n — note |x({0,1}*)| = n/2) and the state becomes
1
*2(|80> + |so @ a)) [yo) , (94)

where z(sp) = yo.

Now apply H®* to the first register. Then measure the first register in the computational basis. (Will ignore the second
register for notational convenience since it just stays |yo).) Analyze two cases x € Dy and x € D, separately:

1. z € Dy. After applying H®":

= X . (95)

z€{0,1}*

After measurement in the computational basis: obtain z € {0,1}* uniformly at random.
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2. x € Dy. After applying H®*:
\/% Z ((—1)%% + (71)(so€aa).z) I2) = \/% Z (—1)%0=(1 4 (=1)%%) |2) . (96)

z€{0,1}* 2€{0,1}*

After measurement in the computational basis: obtain z € {0,1}* such that a -z = 0 mod 2 with probability 2/2*.
(Note that there are 281 2s satisfying a - z = 0.)

Repeat the entirety of the above K times and output 0 if and only if
d := (dimension of the span of the K zs obtained viewed as vectors in F&) = k. (97)

Analyze two cases z € Dy and x € D; separately:

1. z € Dy. By with probability at least 1 —2¢~ % d = k. Therefore the probability of the output being correct,
ie., 0, is at least 1 — 28— K

2. x € Dy. By[LCemma 5} d < k — 1. Therefore, the output is always correct, i.e., equal to 1.

So if we take K > k + 2, then, for all z € D, the probability of being correct is at least 2/3.
Since each repeat costs only 1 query. The overall query complexity is K = k 4+ 2 = O(log(n)), as required. O
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