
Lecture 15

Lemma 6. Let x ∈ {0, 1}k and |x〉 = |x1〉 . . . |xk〉 be a k-qubit state. Then

H⊗k |x〉 =
1√
2k

∑
y∈{0,1}k

(−1)x·y |y〉 , (98)

where H⊗k := H ⊗ · · · ⊗H (k times) and x · y :=
∑k
i=1 xiyi.

Proof. We have

H⊗k |x〉 =H |x1〉 ⊗ · · · ⊗H |xn〉

=
1√
2

(|0〉+ (−1)x1 |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ (−1)x1 |1〉) Eq. (39) (Phase kickback)

=
1√
2k

∑
y1,...,yk∈{0,1}

(−1)x1y1+···+xkyk |y1〉 |y2〉 . . . |yk〉 think about phase for fixed y

=
1√
2k

∑
y∈{0,1}k

(−1)x·y |y〉 ,

as required.

Lemma 7. Let K ∈ N. Suppose z1, . . . , zK ← Fk2 . Then the probability that the dimension of the span of the zis, i.e., the
dimension of the subspace

V := {a1z1 + · · ·+ aKzK | a1, . . . , aK ∈ F2} ≤ Fk2 (99)

is k is at least 1− 2k−K .

Based on [StackExchange post].

Proof. Let A ∈ FK×k2 denote the matrix whose rows are the zis. The dimension of V is the same as the row-rank (dimension
of the span of the rows) of A, which is equal to the column-rank of A by a standard fact in linear algebra. Now, the
column-rank of A is k if and only if the kernel of A is {0} by the rank-nullity theorem, where the kernel of A is defined by

ker(A) := {x ∈ Fk2 | Ax = 0}. (100)

Since the zis are chosen uniformly from Fk2 , A is a uniformly random matrix in FK×k2 . In the following, the probability
is over A← FK×k2 .

Pr[ker(A) 6= {0}] = Pr[∃x ∈ Fk2 , x 6= 0, Ax = 0] definition

≤
∑

x∈Fk
2 ,x6=0

Pr[Ax = 0] union bound

=(2k − 1)
1

2K
Ax is unif. random in FK2 , e.g., suppose xk = 1

≤ 2k

2K
.

Therefore Pr[dim(V ) = k] = Pr[ker(A) = {0}] ≥ 1− 2k−K .

Lemma 8. Let K ∈ N and 0 6= a ∈ Fk2 . Let z1, . . . , zK ∈ Fk2 (arbitrary) be such that ∀i ∈ [K], a · zi = 0 mod 2. Then the
dimension of the span of the zis is at most k − 1.

Proof. It suffices to prove that the dimension of the following subspace is k − 1:

U := {z ∈ Fk2 | a · z = 0}. (101)

Note that U is the kernel of the 1× k matrix A := (a1, . . . , ak). Now, the column-rank of A is 1 since a 6= 0. Therefore, by
the rank-nullity theorem, dim(U) = k − 1.

Remark 8. In the case x ∈ D1, a slight modification of the algorithm above can also recover a: choose K large enough (how
large?) such that in the case x ∈ D1, we have d = k−1 whp; collect the k−1 linearly independent vectors z(1), . . . z(k−1) ∈ Fk2
into the rows of a matrix A ∈ F(k−1)×k

2 and compute the kernel of A, which will have size 2. a is the non-zero element.

Moreover, note that, since n = 2k, we can identify {0, 1, . . . , n− 1}n with {0, 1, . . . , n− 1}Fk
2 .
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https://math.stackexchange.com/questions/3242305/probability-of-a-matrix-that-is-not-full-rank-over-the-finite-field


Therefore, we also have an O(log(n)) quantum algorithm for the following query problem:

Simon′n : D′ ⊆ {0, 1, . . . , n− 1}F
k
2 → Fk2 (102)

where x ∈ D′ if and only if there exists an a ∈ Fk2 − {0k} such that ∀s, t ∈ Fk2 , x(s) = x(t) ⇐⇒ s ∈ {t, t + a} (addition as
defined in the group Zk2 , i.e., component-wise addition), and Simon′n(x) outputs the a (period) associated with x. (Writing
it this way is to allow for direct comparison with the order finding problem at the heart of Shor’s algorithm later.)

Proposition 8. R(Simonn) = Θ(
√
n)

Proof. Upper bound. Randomized query algorithm for finding a collision. Note that the following description can be
formally phrased in terms of a distribution over decision trees (how?).

Given input x ∈ {0, 1, . . . , n− 1}n

Sample a uniformly random subset {i1, . . . , im} ⊆ [n] of size m. Query xi1 , . . . , xim , if there is a collision, i.e., ia 6= ib
with a, b ∈ [m], such that xia = xib , then output 1, else output 0.

How large of a m ≤ n/2 do we need to pick? (Note if m > n/2, guaranteed to find a collision.) If x is a permutation, then
will never observe a collision, so always correct in this case. So the probability of error is the probability that no collision is
observed if x is two-to-one. Comment: first expression: for visual aid, consider a complete bipartite graph with n/2 vertices
in each part.

n(n− 2)(n− 4) . . . (n− 2(m− 1))/m!(
n
m

) =1 ·
(

1− 1

n− 1

)
·
(

1− 2

n− 2

)
. . .
(

1− m− 1

n−m+ 1

)
≤ exp

(
−
m−1∑
i=1

i

n− i

)
≤ exp

(
−
m−1∑
i=1

i

n

)
= exp

(
−m(m− 1)

2n

)
≤ exp

(
− (m− 1)2

2n

)
.

Therefore the probability of error is ≤ ε if

exp
(
− (m− 1)2

2n

)
≤ ε ⇐⇒ m ≥

√
2n ln(1/ε) + 1. (103)

Therefore, Rε(Simonn) ≤ min(
√

2n ln(1/ε) + 1, n/2). So R(Simonn) ≤ O(
√
n). (Note that the algorithm only used the

fact that x is either a permutation or two-to-one. It did not use the additional fact that in the two-to-one case, x is also
periodic.)
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