
Lecture 2

Problem significance.

1. SATISFIABILITY: very general problem that models any problem that you want to solve brute force by trying all
possible solutions.

2. Factoring: online security assumes this problem is hard to solve. More discussion: opposite of multiplying which is easy,
which is why it’s suitable for cryptography: encryption uses multiplication, decryption uses factoring. This pushed
NIST to release new online encryption standards: see press announcement from August 2024.

RSA public-key encryption: merchant: choose p, q large distinct prime numbers, x coprime to (p−1)(q−1) and compute
y such that xy = 1 mod (p− 1)(q − 1); sk = (N, x), pk = (N, y). customer: encrypt m ∈ ZN into ciphertext c := my.
merchant: decrypt by cx. Claim cx = m mod N . Proof by Fermat’s little theorem.

3. Simulating quantum systems: discovering new drugs, batteries, and catalysts. A catalyst that has received a lot of
attention: FeMoCo: could help with converting nitrogen + hydrogen into ammonia at normal pressures/temperatures.
(Currently done using Haber-Bosch process which is very high-pressure and high-temperature.)

A remark on randomized computation. It is important to distinguish between when a problem’s speedup is due to
randomness vs due to quantumness. Can do interesting things with randomness alone. Consider the following two problems:

1. given a string of n bits that’s either all zeros or half zero and half one but you don’t know where they’re placed: decide
which is the case. Randomized O(1), deterministic Ω(n).

2. NAND tree on n := 2h variables. Randomized: consider a randomized algorithm that examines the left or right branch
uniformly at random. If it computes 0 in one branch, it just outputs 1 – this is okay by property of NAND. Let αb(h)
be the maximum complexity of this algorithm when run on inputs that map to b. Then

α0(h) ≤ 2α1(h− 1), (4)

α1(h) ≤ α0(h− 1) + α1(h− 1)/2. (5)

Solves to (
(1 +

√
33)/4

)h
= O(n0.754). (6)

In fact this is the optimal randomized complexity – see Saks and Widgerson ’86. Deterministic: can show it’s Ω(n).

A considerable part of this class will study randomized computation for two reasons:

1. quantum computation can be used to perform randomized computation: in fact, many quantum algorithms, such as
Shor’s, have some non-trivial randomized (but non-quantum) component.

2. we want to show quantum computers can be strictly faster than randomized computers, so we need to consider the
limits of the latter.

Timeline.

• Today: 100s qubits, 1000s of operations. A single operation acts between two qubits (think of it as the generalization
of a Boolean logic gate like AND). Operations limited by qubit interacting with environment and losing its quantum
state – “decoherance”.

• Companies target: 100,000 - 1 million qubits by 2030 (first number IBM, second number Google) and 1 million
operations. Not as crazy as it sounds if a “quantum Moore’s law” holds (maybe holds? see chart but you can be the
judge.)

• Context:

1. Breaking online security (factoring RSA-2048): 20 million qubits, 3 billion operations. Gidney and Eker̊a, Quantum
2021

2. Simulating FeMoco: 4 million qubits, 5 billion operations. Lee,...,Babbush, PRX Quantum 2021

Postulates of quantum information

As a concrete motivation: discussion of the CHSH game.

3

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/SW86/SW86.pdf
https://www.riverlane.com/blog/quantum-moores-law
https://quantum-journal.org/papers/q-2021-04-15-433/
https://quantum-journal.org/papers/q-2021-04-15-433/
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.030305

