Lecture 7

Remark 2. For any f: {0,1}"™ — {0,1} that depends on all n bits, D(f) > log(n + 1).

There exists a family of fi: {0, 1}k+2k — {0,1} depending on all n := k + 2% bits such that D(f) = k + 1 ~ log(n).
Why? Consider the address function f: {0, 1}k+2k — {0,1} defined by f(aias...arxoxy ... Tor) = Tar—ar, Where ay ... ay is
the integer represented by a; ...ay in binary. (Note that this does not contradict the lower bound since log,(k + 2% 4+ 1) <
D(f) < k+1 = logy(2++1),)

The OR,,: {0,1}™ — {0,1} function is defined by
OR,(z)=x1Vx2 V- -V, (26)
Proposition 1. D(OR,,) = n.

Proof. D(OR,,) < n is obvious (what’s the DDT?).

For D(OR,,) > n. Suppose for contradiction that there is a DDT T with depth(T") < n that computes OR,,. Consider
the root-to-leaf path defined by following edges labelled by 0. We may assume wlog (without loss of generality) that the leaf
vertex on this path is labelled by 0, else T(0™) = 1 # OR,,(0™), contradiction. Suppose the vertices on this path are labelled
by i1,...,i4, where d < n. Let j € [n] — {i1,...,iq} (exists since d < n). Let x € {0,1}" be the all-zeros bitstring except for
a 1 at position j. Then T(x) = 0 # OR,,(x) contradiction. O

Definition 6 (Randomized decision tree (or query algorithm)). A randomized decision tree is a probability distribution 7
over deterministic decision trees.

Definition 7 (Randomized query computation). Given & € D and a randomized decision tree 7, we write T () for the
random variable on I' defined by:

Viel, Pr[T(z) =4 =Pr[T(z)=i|T < T). (27)
Let € € (0,1/2). We say that a randomized decision tree 7 computes f with (two-sided) error € if
Ve e D, Pr[T(z) = f(z)] >1—e (28)
Note that
Pr(T(z) = f(x)] = Pr(T(2) = f(z) | T+ T] =Y _PiT | T« T]-1[T(z) = f(x)]. (29)
T
Definition 8 (Randomized query complexity). Given a randomized decision tree (RDT) T, its depth is defined by
depth(7) := max{depth(T") | Pr[T' | T < T|] > 0}. (30)
Then for € € (0,1/2),
R.(f) == min{depth(7) | 7 RDT, 7 computes f with bounded-error €}. (31)
Also standard to write
R(f) = Ruiy3(f). (32)

Definition 9 (Quantum query algorithm). A quantum query algorithm of depth d € N is defined by the following data:
1. w € N. (Called the dimension of the workspace of the algorithm.)
2. d 4+ 1 unitary matrices Uy, Uy,...,U; € C" @ C™ @ C¥ = C"™v,

3. A T-outcome projective measurement M := {Il; | s € I'} on C™"™¥.

Definition 10 (Quantum oracle). For z € {0,...,m — 1}", the quantum oracle of z is the unitary matrix O, € C»m*nm
defined by

Oq [i)17) = 1) [(j + i) mod m), (33)
for all i € [n] and j € [m]. (And linearly extended. For z € Z, z mod m is the unique integer in the range {1,...,m} with

the same remainder as z when divided by m.)ﬂ
In the special case of m = 2, the definition is equivalent tdﬂ

0, 1) 1b) = i} b @ ) (34)
for all ¢ € [n] and b € {0, 1}, where @& denotes XOR and |b) represents a 1-qubit quantum state.
5Note that this definition is slightly different than in my lecture notes because in this course, I decided to use |1),...,|m) to denote the standard
basis vectors in C™ , whereas in the lecture notes, I used |0),...,|m — 1).

6Recall that for m = 2, we also use |0) to denote (1,0)T and |1) to denote (0,1)T.
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Definition 11 (Quantum query computation). Given & € D and a quantum query algorithm A, we write A(x) for the
random variable on I' defined by:

Vi € Fa Pr[A(‘r) = Z] = ”Hz : Ud(Om & ]]-w) s Ul(Oz ® ]]-w)UO |1> ”27 (35)

where 1,, € C*¥*% is the identity matrix and we recall |1) € C"* is the first computational basis vector. (Note there are d

occurrences of O, on the RHS.)
For € € (0,1/2), we say that a quantum query algorithm .4 computes f with (two-sided) error ¢ if

Vo € D, PrlA(z) = f(x)] > 1 —, (36)
where the probability is over the random variable A(z).

Definition 12 (Quantum query complexity). For e € (0,1/2), Q.(f) is defined to be the minimum depth of any quantum
query algorithm that computes f with (two-sided) error e. Also standard to write Q(f) = Q1/3(f)-
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