Lecture 11

Three comments on Nobel Prize in Phyics, 2025 to Clarke, Devoret, Martinis:

1. Part of origin story of superconducting qubits. They showed macroscopic objects (superconducting circuits) can exhibit
a certain quantum phenomenon, namely quantum tunneling, where a quantum object can pass a barrier with less energy
than any classical object.

2. Martinis used to be head of hardware at Google’s quantum computing lab (known as Google Quantum AT), and led
the first “quantum supremacy” experiment — an experiment where a quantum computer does a *useless* task faster
than any known classical algorithm [Nature paper|. Left to found quantum computing startup QoLab. Devoret is the
new head of quantum hardware at Google.

3. The notion of quantum tunneling has a particularly striking manifestation in quantum algorithms: the glued-tree
problem proposed by one of my PhD advisors Andrew Childs and collaborators: paper link. Briefly describe the
problem. I plan to cover the analysis of this problem in my graduate course on quantum algorithms next semester [link
to course] and I encourage you to register if interested. Alternatively, it’s covered in Andrew’s lecture notes and can
serve as the basis of your project for this course.

Okay, back to regularly scheduled programming!
Last time we considered partial measurement of the first qubit of the state:
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Partial measurement of the first qubit in a circuit diagram.
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Two possible measurement outcomes:
1. b= 0. Probability is 1/2 + 1/4 = 3/4. Given this outcome, the state of second qubit collapses to
o) = V/2/310) +V/1/3]1)
. This state is referred to as the post-measurement state of the second qubit.
2. b= 1. Similar.
Proposition 4. Let |¢) be any n-qubit state. Consider the following two experiments:
1. Directly measure |¢)’s first m qubits, obtaining outcome b € {0,1}™ and post-measurement state |dp).

2. First apply some (n—m)-qubit unitary U on the last (n—m) qubits of |¢) and then measure its first m qubits, obtaining
outcome ¢ € {0,1}™ and post-measurement state |@L).

Then the distribution on b and ¢ are the same and |¢,) = U |¢.).
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Proof. State of the first experiment just before measurement is |¢). The probability of measuring b € {0, 1} is

(bl @ 12~ [g) |2 (65)
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https://www.nature.com/articles/s41586-019-1666-5
https://arxiv.org/abs/quant-ph/0209131
https://wdaochen.com/teaching_2025w2
https://wdaochen.com/teaching_2025w2

and given b, the post-measurement state is
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The state of the second experiment just before the measurement is
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For ¢ € {0,1}"™, we have
((c] @ 12— (197 @U) |¢) = (| ® U) |¢) = (1® U)({c| © 190" |§) = U({c| © 12"7™)) |¢) (68)
But U is unitary. So probability of measuring ¢ € {0,1}" is
U (el ® 1207 @) || = [|({c] @ 12T |g) |2, (69)
and given ¢, the post-measurment state is
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as required O
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Quantum algorithms and speedups.

Deutsch’s problem. Historically, the first example of quantum speedup.
Given f: {0,1} — {0,1}, ask balanced or constant.

1. Classically, assume the function f can only be accessed through queries. Unit cost per query. Classically, need two
queries to f solve problem with certainty.

2. Quantumly, assume the ability to apply the quantum oracle for f, that is, the 2-qubit unitary defined by
Of |z} [b) — |} [b& f(x)) (71)

where z,b € {0,1}. Unit cost per application of O — also referred to as (quantum) query to f. Quantumly, can solve
problem using a single query to f with certainty.

We’ll motivate these assumptions later. Then do quantum analysis directly following Fig. 5.6 of Watrous notes. First
note H? = 1,, so
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Then?
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Comment: I slightly rushed the analysis of the (partial) measurement at the end, and plan to say a bit more about it at the
start of next lecture.

3In class, T wrote (—1)F (D =f(0) a5 (=1)/(0—Ff(1) at some point during the analysis. This was unnecessary, but it is still correct since Va, b € {0,1},
we have (—1)2~% = (—=1)?~2; and both sides equal (—1)2®b. (Can check directly or just observe that (—1) to the power of any integer only depends
on the parity of that integer.)
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