Lecture 13

Comment: HW1 Q4: good to redo in Dirac notation if you used matrices because when there are more than two qubits
(say, on exam), direct matrix manipulation is really inefficient. HW1 Q2 interpretation: non-adaptive deterministic query
complexity of NAND tree on n variables is n. If adaptive, answer is still Q(n), but need an enhanced argument. Consider
(1 A x2) V (—x1 A x3), which needs 3 non-adaptive queries but only 2 adaptive ones.

Recall the Deutsch-Jozsa problem: given f: {0,1}" — {0,1}, ask balanced or constant. Classically, need 2"~1 + 1 queries
f to solve with certainty. Quantumly, it turns out that only 1 (quantum) query to f suffices.

Recall the quantum oracle for f is given by

Oylz)[b) = |z) [b& f(x)), (74)

where z € {0,1}",b € {0,1}.
The quantum circuit for the Deutsch-Jozsa algorithm is shown below:
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Output “constant” if the measurement outcome is 0" and “balanced” if the measurement outcome is not 0.

To make the analysis easier, we will change the I to an H (which does not affect the measurement distribution as per a
lemma from 2 lectures ago), introduce the quantum phase oracle and give a general expression for how multiple Hadmard
gates act on a computational basis state.

Definition 13. The quantum phase oracle for f is given by
Us |z) [b) = (=1)"7 |z) [b) , (75)
where z € {0,1}",b € {0,1}.
The following lemma will be used in the next two propositions.

Lemma 1. Forb € {0,1}, we have
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H |b) = —=(|0) + (~1)"[1)). (76)
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Proof. By direct calculation. O
Proposition 5 (Phase kickback trick). We have Uy = (Lon ®H)O¢(1on ®H).

Proof. Write 1 for 1on». Then
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as required. O
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Proposition 6. For all z € {0,1}",

R ) SR

ye{0,1}n
where H®™ = H ® --- ® H (n times) and x -y =Y | ;Y.
Proof. We have
HE" ) =H |22} © - Hz,)

(10) + (=1 [1)) &
——= > V),

ye{0,1}"

1 .
® \ﬁ(|0> + (=)™ 1)

I
-5l

g

as required

Analysis of the Deutsch-Jozsa algorithm.
o) 1) |z) [1)
r 3
f(x) z)|1
@n 2O )
HE™ f(@) )z
) 1)
\/27 Z Z [y) 1)

- 2i Q=) @ray ) 1)

Therefore the probability of measuring y = 0" is

P0"] = o (3 (-1 @)

If f is constant, then Pr[0"] = 1. If f is balanced, then Pr[0"] = 0.

by Eq. (76)

Remark 2. Does DJ mean we have a real (unconditional) provable exponential quantum speedup? No. To compute f in
the real world, a description of f: {0,1}" — {0,1} as a circuit* must be given. But once we have such a description of f,
we may be able to solve the problem faster than time 27! + 1 by analyzing the circuit diagram rather than only evaluating

(aka querying) the circuit. Comment: will say a bit more about this next lecture.

If we are forced to only query the circuit, then yes, DJ gives an exponential quantum speedup between quantum and
randomized query complexity (if we also demand certain correctness). Being forced to only query the circuit is the essential
assumption of the query model of computation. The real-world model of computation (aka Turing model) does not make
this assumption, so DJ does not constitute a provable exponential quantum speedup in the real world.

4If a circuit sounds abstract, think of this as a program or description. These become circuits once you compile them to run on hardware.
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