Lecture 14

Comment: T made two mistakes today, sorry! (1) my first definition of D was wrong, which was pointed out by a student,
Joey; my second “alternative” definition is the correct one (2) my claim that the deterministic query complexity of Simon’s
problem is equal to 2" ~! + 1 is wrong: while this is an upper bound, the tight bound is @(2”/ 2) like in the randomized case.
For more details, see below.

Even within the query model, it is unsatisfactory that the DJ speedup only holds when we demand certain correctness.
Question: can we have an exponential speedup in the query model if we don’t demand certain correctness, but say 99.99%
correctness? It turns out the answer is yes, as can be witnessed by Simon’s problem. This problem inspired Shor’s algorithm,
which in some sense instantiates the given function in Simon’s problem as a specific circuit yet the exponential speedup
persists as far as we know.

Simon’s problem

Definition 14 (Simon’s problem). For n € N, define the set of functions:

Do = {f:{0,1}" = {0,1}" | [is a bijection},
Dy ={f:{0,1}" — {0,1}" | there exists unique s # 0" such that for all z,y € {0,1}": f(z) = f(y) < z € {y,y D s}}.

Problem: given query access to f € Dy U Dy, determine whether f € Dg or f € D;.

Functions f € Dy are 2-to-1, i.e., every image of f has exactly two preimages. But not all 2-to-1 functions are in Dy
(why?). The s corresponding to an f € D is known as the period of f. Comment: illustrate by cube with 4 colors; the
preceding sentence means that each color appears exactly twice (as we saw in our example).

Warning: the definition of Dy above is the alternative definition I gave in class. In fact, the first definition I gave of Dy,

namely
{f:{0,1}" — {0,1}" | there exists unique s # 0" such that for all z € {0,1}": f(z) = f(z D s)},

is wrong. Functions in this set might not be 2-to-1. (It may be fun to see why.)

Classical query complexity. For deterministic computation, the query complexity is < 27! 4+ 1. But, unlike what I said
in class, this is not the tight bound. In fact, the tight bound is @(2"/2) like in the randomized case. For the upper bound,
the idea is sort of like a “derandomized” version of the randomized algorithm below. For more, see John Watrous’s answer
to this [StackExchange post]. For randomized computation, the query complexity is @(2"/).

1. Upper bound. Consider querying the value of f on a random subset of M points. The probability that a pair of
(distinct) points map to the same value under f is 1/(2" — 1) &~ 1/2™. So if we know the value of f on & 2™ pairs then
we can get the probability close to 2" x 1/2" = 1.> But to get the value of f on ~ 2" pairs, only need to query f on
M =~ 2 x 2"/2 points so that (1\2/1) ~ 2". (Related to birthday paradox.)

2. Lower bound. The intuition is that any pair of inputs mapping to distinct values only rules out one s so need to query
f on at least ©(2™/2) inputs to rule out all possible s.

Quantum query complexity. The quantum algorithm solves Simon’s problem with O(n) queries:

0" —A—J Fren Hen A=y
Oy

0)" —# [A—=— 1(z)

Analysis:
1. Initialize with |[0™)]0™).

2. Apply H®™ to the first register (i.e., first n qubits).0

1
2} 07) (79)

5This is a hand wave as probability is not additive like this, more precisely Pr[A U B] # Pr[A] + Pr[B] in general.
6The word “register” refers to a collection of qubits. I'm choosing to refer to the first n qubits as the “first register” here for convenience.

24

https://quantumcomputing.stackexchange.com/questions/5041/classical-complexity-for-simons-problem

3. Apply Oy: |z) |y) — |z) |y @ f(x)) to obtain
1

@Zm |/ ()

4. Measure the second register (i.e., last n qubits), suppose outcome is f(z) for some z € {0, 1}".
If f € Dy, then the state of the first register collapses to |z).
If f € D; and the period of f is s, then the state of the first register collapses to

1
75 e+ lz@s)).

25

(81)

