
Lecture 14

Comment: I made two mistakes today, sorry! (1) my first definition of D1 was wrong, which was pointed out by a student,
Joey; my second “alternative” definition is the correct one (2) my claim that the deterministic query complexity of Simon’s
problem is equal to 2n−1 + 1 is wrong: while this is an upper bound, the tight bound is Θ(2n/2) like in the randomized case.
For more details, see below.

Even within the query model, it is unsatisfactory that the DJ speedup only holds when we demand certain correctness.
Question: can we have an exponential speedup in the query model if we don’t demand certain correctness, but say 99.99%
correctness? It turns out the answer is yes, as can be witnessed by Simon’s problem. This problem inspired Shor’s algorithm,
which in some sense instantiates the given function in Simon’s problem as a specific circuit yet the exponential speedup
persists as far as we know.

Simon’s problem

Definition 14 (Simon’s problem). For n ∈ N, define the set of functions:

D0 =
{
f : {0, 1}n → {0, 1}n

∣∣ f is a bijection
}
,

D1 =
{
f : {0, 1}n → {0, 1}n

∣∣ there exists unique s 6= 0n such that for all x, y ∈ {0, 1}n : f(x) = f(y) ⇐⇒ x ∈ {y, y ⊕ s}
}
.

Problem: given query access to f ∈ D0 ∪D1, determine whether f ∈ D0 or f ∈ D1.

Functions f ∈ D1 are 2-to-1, i.e., every image of f has exactly two preimages. But not all 2-to-1 functions are in D1

(why?). The s corresponding to an f ∈ D1 is known as the period of f . Comment: illustrate by cube with 4 colors; the
preceding sentence means that each color appears exactly twice (as we saw in our example).

Warning: the definition of D1 above is the alternative definition I gave in class. In fact, the first definition I gave of D1,
namely {

f : {0, 1}n → {0, 1}n
∣∣ there exists unique s 6= 0n such that for all x ∈ {0, 1}n : f(x) = f(x⊕ s)

}
,

is wrong. Functions in this set might not be 2-to-1. (It may be fun to see why.)

Classical query complexity. For deterministic computation, the query complexity is ≤ 2n−1 + 1. But, unlike what I said
in class, this is not the tight bound. In fact, the tight bound is Θ(2n/2) like in the randomized case. For the upper bound,
the idea is sort of like a “derandomized” version of the randomized algorithm below. For more, see John Watrous’s answer
to this [StackExchange post]. For randomized computation, the query complexity is Θ(2n/2).

1. Upper bound. Consider querying the value of f on a random subset of M points. The probability that a pair of
(distinct) points map to the same value under f is 1/(2n − 1) ≈ 1/2n. So if we know the value of f on ≈ 2n pairs then
we can get the probability close to 2n × 1/2n = 1.5 But to get the value of f on ≈ 2n pairs, only need to query f on
M ≈ 2× 2n/2 points so that

(
M
2

)
≈ 2n. (Related to birthday paradox.)

2. Lower bound. The intuition is that any pair of inputs mapping to distinct values only rules out one s so need to query
f on at least Ω(2n/2) inputs to rule out all possible s.

Quantum query complexity. The quantum algorithm solves Simon’s problem with O(n) queries:

n

n

|0〉⊗n H⊗n

Of

H⊗n y

|0〉⊗n f(z)

Analysis:

1. Initialize with |0n〉 |0n〉.

2. Apply H⊗n to the first register (i.e., first n qubits).6

1√
2n

∑
x∈{0,1}n

|x〉 |0n〉 (79)

5This is a hand wave as probability is not additive like this, more precisely Pr[A ∪B] 6= Pr[A] + Pr[B] in general.
6The word “register” refers to a collection of qubits. I’m choosing to refer to the first n qubits as the “first register” here for convenience.

24

https://quantumcomputing.stackexchange.com/questions/5041/classical-complexity-for-simons-problem

3. Apply Of : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 to obtain
1√
2n

∑
x

|x〉 |f(x)〉 (80)

4. Measure the second register (i.e., last n qubits), suppose outcome is f(z) for some z ∈ {0, 1}n.

If f ∈ D0, then the state of the first register collapses to |z〉.
If f ∈ D1 and the period of f is s, then the state of the first register collapses to

1√
2

(|z〉+ |z ⊕ s〉) . (81)

25

