
Lecture 15

Comment: Draw two colored cubes on n = 3 bits, one for D0 and one for D1. Do the first step below using the examples.

1. Measure the second register (i.e., last n qubits), suppose outcome is f(z) for some z ∈ {0, 1}n.

If f ∈ D0, then the state of the first register collapses to |z〉.
If f ∈ D1 and the period of f is s, then the state of the first register collapses to

1√
2

(|z〉+ |z ⊕ s〉) . (82)

2. Apply H⊗n to the first register and measure all n qubits.

If f ∈ D1:
1√

2n+1

∑
y∈{0,1}n

(
(−1)z·y + (−1)(z⊕s)·y

)
|y〉 =

1√
2n−1

∑
y∈{0,1}n
y·s=0

(−1)z·y |y〉 , (83)

the output y is uniformly random subject to y · s = 0 (dot product mod 2).

If f ∈ D0:
1√
2n

(−1)y·z |y〉 (84)

the output y is uniformly random without constraints.

3. Repeat these steps K = O(n) (the precise setting of K depends on the desired success probability, see later) times and
collect the ys into the rows of a K × n matrix A ∈ FK×n2 . Output D0 if A has rank n and D1 if A has rank less than
n, where the rank is defined over F2. (Note that the rank of A is at most n.)

Comment: rank of a zero-one matrix A over F2 is the dimension of the span of the rows of A over F2, which may be

different from the rank of A over R: for example, the matrix

1 1 0
0 1 1
1 0 1

 has rank 2 over F2 but rank 3 over R. But almost

all other standard facts in linear algebra still hold over F2, for example, row-rank=column-rank, the rank-nullity theorem,
full-rank implies invertible, etc.

Query complexity is K = O(n) since each repeat uses only 1 query.
For correctness, first note that if f ∈ D1 then A must have rank less than n since the rows of A are all orthogonal to

s. Alternatively, note that As = 0 and s 6= 0 so n(A) > 0, so the rank-nullity theorem, i.e., rk(A) + n(A) = n, implies
rk(A) < n. Therefore, it suffices to lower bound the probability that the rank of A is equal to n as a function of K, which is
done by the following lemma.

Lemma 2. Let K ∈ N. Suppose y1, . . . , yK ← Fn2 . Then

Pr[rk(A) = n] ≥ 1− 2n−K . (85)

Based on [StackExchange post].

Proof. Since the yis are chosen uniformly from Fn2 , A is a uniformly random matrix in FK×n2 . In the following, the probability
is over A← FK×n2 .

Pr[ker(A) 6= {0}] = Pr[∃x ∈ Fn2 \ {0}, Ax = 0] definition

≤
∑

x∈Fn
2 \{0}

Pr[Ax = 0] union bound

=(2n − 1)
1

2K
x 6= 0 =⇒ Ax is uniformly random in FK2

≤ 2n

2K
.

Therefore, Pr[rk(A) = n] = Pr[ker(A) = {0}] ≥ 1− 2n−K , where the first equality follows from the rank-nullity theorem.

Comment: proof that x 6= 0 =⇒ Ax is uniformly random in FK2 : since x 6= 0, assume wlog that x1 = 1 so Ax is the
first column of A, which is a uniformly random vector in FK2 , plus some other independent vector in FK2 due to the other
coordinates of x: but “uniformly random + anything independent = uniformly random”. So Pr[Ax = 0] is the probability
that a uniformly random vector in FK2 is equal to 0, i.e., 0K ,7 which is 1/2K .

Therefore, by choosing K = n+ 100, say, the probability that the rank of A is equal to n is at least 1−2n−K ≥ 1−2−100,
which is very close to 1.

7You can think of me writing 0 for 0K as an abuse of notation but it can be justified in an abstract sense.
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https://math.stackexchange.com/questions/3242305/probability-of-a-matrix-that-is-not-full-rank-over-the-finite-field

