Lecture 20

Grover's search algorithm. Grover's algorithm solves the problem of *unstructured search*. Suppose we have a function $f: \{0,1\}^n \to \{0,1\}$, and we are promised that either:

- 1. f(x) = 0 for all $x \in \{0, 1\}^n$, or
- 2. there exists a unique $x^* \in \{0,1\}^n$ such that $f(x^*) = 1$ and f(x) = 0 for all $x \neq x^*$.

The goal is to determine which case holds, and if there is a marked element x^* , to find it. Comment: Think of f as evaluating a SAT formula.

Classically, you would need to query roughly 2^n values in the worst case. Grover's algorithm can solve this problem using $O(\sqrt{2^n})$ queries, giving a quadratic speedup.

Fact 10. In the classical query model, distinguishing these two cases requires $\Omega(2^n)$ queries in the worst case, since you might need to check nearly all 2^n possible inputs before finding x^* (or confirming no such x^* exists).

Recall from Lecture 13 that the quantum phase oracle for $f: \{0,1\}^n \to \{0,1\}$ is given by

$$U_f |x\rangle |b\rangle = (-1)^{b \cdot f(x)} |x\rangle |b\rangle, \qquad (112)$$

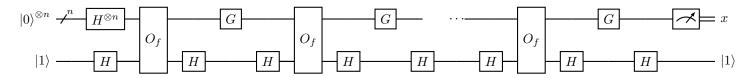
where $x \in \{0,1\}^n, b \in \{0,1\}$. The phase kickback trick shows that $U_f = (\mathbb{1}_{2^n} \otimes H)O_f(\mathbb{1}_{2^n} \otimes H)$.

Proposition 9 (Grover's algorithm). Given query access to $f: \{0,1\}^n \to \{0,1\}$ where either f(x) = 0 for all x, or there exists a unique $x^* \in \{0,1\}^n$ with $f(x^*) = 1$, Grover's algorithm can distinguish these cases and find x^* (if it exists) using

$$O(\sqrt{2^n}) = O(2^{n/2}) \tag{113}$$

queries to f.

The quantum circuit for Grover's algorithm is:



where the pair (U_f, G) is repeated $k \approx \frac{\pi}{4}\sqrt{2^n}$ times. The intermediate H gates on the ancilla could be deleted as they satisfy $H^2 = \mathbb{1}$ – drawing them makes it clear where the U_f s come from.

Proof. Let $N := 2^n$. Let $|\psi\rangle$ denote the N-dimensional quantum state

$$|\psi\rangle := H^{\otimes n} |0^n\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle. \tag{114}$$

Let $G \in \mathbb{C}^{N \times N}$ denote the Grover diffusion operator:

$$G := \mathbb{1}_N - 2|\psi\rangle\langle\psi|. \tag{115}$$

Comment: may discuss decomposing this operator into elementary quantum gates if there's time, else just Google or see, e.g., the first answer to this StackExchange post.

Let $V_f \in \mathbb{C}^{N \times N}$ denote the operation U_f implements on the first register when the ancilla qubit register is set to $|1\rangle$, i.e.,

$$V_f \colon |x\rangle \mapsto (-1)^{f(x)} |x\rangle \tag{116}$$

Then, the pair (U_f, G) forming each block implements the "Grover iteration" unitary GV_f on the first register. So suffices to analyze $(GV_f)^k |\psi\rangle$.

We analyze two cases:

1. Case: f(x) = 0 for all $x \in \{0, 1\}^n$. In this case, $V_f |x\rangle = |x\rangle$ for all x, so $(GV_f)^k = G^k$. Since $G |\psi\rangle = -|\psi\rangle$, we have $G^k |\psi\rangle = (-1)^k |\psi\rangle$. Therefore, measuring $(GV_f)^k |\psi\rangle$ gives a uniformly random $x \in \{0, 1\}^n$, and we can verify that f(x) = 0, confirming this case.

2. Case: there exists unique $x^* \in \{0,1\}^n$ with $f(x^*) = 1$. Define the following quantum states:

$$|\psi_0\rangle := \frac{1}{\sqrt{N-1}} \sum_{x \mid f(x)=0} |x\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq x^*} |x\rangle, \qquad (117)$$

$$|\psi_1\rangle \coloneqq |x^*\rangle. \tag{118}$$

These are normalized states: $|\psi_0\rangle$ corresponds to the unmarked elements, and $|\psi_1\rangle$ is the unique marked element. Note that $\langle \psi_0 | \psi_1 \rangle = 0$ (orthogonal).

The initial state $|\psi\rangle$ can be written as

$$|\psi\rangle = \sqrt{\frac{N-1}{N}} |\psi_0\rangle + \sqrt{\frac{1}{N}} |\psi_1\rangle = \cos(\theta) |\psi_0\rangle + \sin(\theta) |\psi_1\rangle, \qquad (119)$$

where $\theta := \arcsin(\sqrt{1/N}) \in (0, \pi/2]$.

Analysis of Grover iteration GV_f :

We compute how GV_f acts on $|\psi_0\rangle$ and $|\psi_1\rangle$:

$$GV_f |\psi_0\rangle = G |\psi_0\rangle \quad (\text{since } V_f |\psi_0\rangle = |\psi_0\rangle)$$

$$= |\psi_0\rangle - 2 |\psi\rangle \langle \psi |\psi_0\rangle$$

$$= |\psi_0\rangle - 2\cos(\theta) |\psi\rangle$$

$$= |\psi_0\rangle - 2\cos(\theta)(\cos(\theta) |\psi_0\rangle + \sin(\theta) |\psi_1\rangle)$$

$$= (1 - 2\cos^2(\theta)) |\psi_0\rangle - 2\cos(\theta)\sin(\theta) |\psi_1\rangle$$

$$= -\cos(2\theta) |\psi_0\rangle - \sin(2\theta) |\psi_1\rangle.$$

Similarly,

$$GV_f |\psi_1\rangle = -G |\psi_1\rangle \quad (\text{since } U_f |\psi_1\rangle = -|\psi_1\rangle)$$

$$= -|\psi_1\rangle + 2 |\psi\rangle \langle \psi |\psi_1\rangle$$

$$= -|\psi_1\rangle + 2\sin(\theta) |\psi\rangle$$

$$= 2\sin(\theta)(\cos(\theta) |\psi_0\rangle + \sin(\theta) |\psi_1\rangle) - |\psi_1\rangle$$

$$= 2\sin(\theta)\cos(\theta) |\psi_0\rangle + (2\sin^2(\theta) - 1) |\psi_1\rangle$$

$$= \sin(2\theta) |\psi_0\rangle - \cos(2\theta) |\psi_1\rangle.$$

Therefore, GV_f always maps the 2-dimensional subspace span($|\psi_0\rangle$, $|\psi_1\rangle$) to itself. We can reduce the analysis to linear algebra in \mathbb{C}^2 by working in the basis $\{|\psi_0\rangle$, $|\psi_1\rangle$.

In this basis, $|\psi\rangle$ is represented as

$$\begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}, \tag{120}$$

and $-GV_f$ is represented as the matrix

$$A := \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}. \tag{121}$$

This is the rotation matrix by angle 2θ anticlockwise!

Comment: Note that $G = \mathbb{1}_N - 2|\psi\rangle\langle\psi|$ is a reflection about the hyperplane perpendicular to $|\psi\rangle$, while $V_f = \mathbb{1}_N - 2|\psi_1\rangle\langle\psi_1|$ (check!) is a reflection about the hyperplane perpendicular to $|\psi_1\rangle$, so the above calculations also proves the mathematical fact that a product of two reflections is a rotation.