Lecture 20

Grover’s search algorithm. Grover’s algorithm solves the problem of unstructured search. Suppose we have a function
f:{0,1}™ — {0,1}, and we are promised that either:

1. f(z) =0 for all x € {0,1}", or
2. there exists a unique z* € {0,1}" such that f(z*) =1 and f(z) =0 for all z # z*.

The goal is to determine which case holds, and if there is a marked element x*, to find it. Comment: Think of f as evaluating
a SAT formula.

Classically, you would need to query roughly 2™ values in the worst case. Grover’s algorithm can solve this problem using
O(v/2") queries, giving a quadratic speedup.

Fact 10. In the classical query model, distinguishing these two cases requires 2(2") queries in the worst case, since you
might need to check nearly all 2" possible inputs before finding z* (or confirming no such z* exists).

Recall from Lecture 13 that the quantum phase oracle for f: {0,1}™ — {0,1} is given by
Uy |2) 1b) = (=1)"7@ |2) [b) , (112)
where z € {0,1}",b € {0,1}. The phase kickback trick shows that Uy = (Lon @H)Oy(1an QH).

Proposition 9 (Grover’s algorithm). Given query access to f: {0,1}" — {0,1} where either f(x) = 0 for all x, or there
exists a unique x* € {0,1}" with f(z*) =1, Grover’s algorithm can distinguish these cases and find x* (if it exists) using

O(V27) = 0(2/?) (113)
queries to f.

The quantum circuit for Grover’s algorithm is:

0ye A pren (G} [G] : 1G] =
Oy Oy Oy

) — @@ Ha——@—@- Ha—{a——

where the pair (Uy, G) is repeated k ~ 71/2" times. The intermediate H gates on the ancilla could be deleted as they satisfy
H? =1 - drawing them makes it clear where the Uss come from.

Proof. Let N := 2™, Let |¢) denote the N-dimensional quantum state
1
) = HE0") = = D o). (114)
\/N ze{0,1}m
Let G € CNV*¥ denote the Grover diffusion operator:
G =y —20) (9] (115)

Comment: may discuss decomposing this operator into elementary quantum gates if there’s time, else just Google or see,
e.g., the first answer to this StackExchange post.
Let V; € CV*N denote the operation U; implements on the first register when the ancilla qubit register is set to |1), i.e.,

Vie |z) = (=17 |a) (116)

Then, the pair (U, G) forming each block implements the “Grover iteration” unitary GVy on the first register. So suffices
to analyze (GV;)* [¢).
We analyze two cases:

1. Case: f(z) =0 for all x € {0,1}". In this case, Vy |z) = |z) for all z, so (GV})* = G*. Since G [¢) = — [¢)), we have
G* [¢) = (=1)* |¢p). Therefore, measuring (GV;)* [1) gives a uniformly random x € {0,1}", and we can verify that
f(z) =0, confirming this case.
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2. Case: there exists unique z* € {0,1}" with f(z*) = 1. Define the following quantum states:

1

1
|¢0>5=m Z |$>:ﬁ2|$>7

z|f(xz)=0 rFET*
1) = [z7). (118)

(117)

These are normalized states: |1)o) corresponds to the unmarked elements, and |t);) is the unique marked element. Note
that (¢pol1p1) = 0 (orthogonal).

The initial state i) can be written as

) = 2 o)+ ) = cos(9) )+ sne) ) (119)

where 0 := arcsin(,/1/N) € (0,7/2].

Analysis of Grover iteration G'Vy:

We compute how GV} acts on [1)g) and [¢1):

GV lho) = Glpo)  (since Vi [tho) = |¢0))
= [tho) — 2[) ([vo)
= [to) — 2cos(0) [¢)
= |tbo) — 2cos(6)(cos(0) [to) + sin(6) [¢1))
= (1 - 2¢05(68)) [to) — 2cos(6) sin(0) |¢1)
= —cos(20) 1) — sin(20) [1)1) .

Similarly,

GVylgn) = =G¢r)  (since Uy [th1) = —[¢1))
= — 1) + 2[¢) (Y[Y1)
= —[¢1) + 2sin(0) |¢)
= 2sin(6)(cos(0) [tho) + sin(0) [¢1)) — [¢1)
= 2sin(6) cos(f) [1ho) + (2sin?(0) — 1) |21)
= sin(20) |pg) — cos(26) |¢1) .

Therefore, GV always maps the 2-dimensional subspace span(|1y) , [¢1)) to itself. We can reduce the analysis to linear
algebra in C? by working in the basis {|o) , [¢1)}.

In this basis, |¢)) is represented as
cos(0)
(sin(@)) ’ (120)
and —GVy is represented as the matrix
~ [cos(20) —sin(20)
© \sin(20)  cos(26) )

This is the rotation matrix by angle 26 anticlockwise!

(121)

Comment: Note that G = 1y —2[¢)(¢| is a reflection about the hyperplane perpendicular to |¢), while V; =
1n —2[11) (31| (check!) is a reflection about the hyperplane perpendicular to |i71), so the above calculations also
proves the mathematical fact that a product of two reflections is a rotation.
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