Lecture 21

Therefore,

$$A^{k} = \begin{pmatrix} \cos(2k\theta) & -\sin(2k\theta) \\ \sin(2k\theta) & \cos(2k\theta) \end{pmatrix}. \tag{122}$$

Applying A^k to $|\psi\rangle$ the basis $\{|\psi_0\rangle, |\psi_1\rangle\}$ gives

$$\begin{pmatrix} \cos(2k\theta) & -\sin(2k\theta) \\ \sin(2k\theta) & \cos(2k\theta) \end{pmatrix} \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix} = \begin{pmatrix} \cos(2k\theta)\cos(\theta) - \sin(2k\theta)\sin(\theta) \\ \sin(2k\theta)\cos(\theta) + \cos(2k\theta)\sin(\theta) \end{pmatrix} = \begin{pmatrix} \cos((2k+1)\theta) \\ \sin((2k+1)\theta) \end{pmatrix}. \tag{123}$$

Therefore, back in the original basis,

$$(GU_f)^k |\psi\rangle = (-1)^k (\cos((2k+1)\theta) |\psi_0\rangle + \sin((2k+1)\theta) |\psi_1\rangle).$$
 (124)

This is the key amplitude amplification formula.

The probability of measuring $|x^*\rangle$ (the marked element) is

$$|\langle x^*|(GU_f)^k|\psi\rangle\rangle|^2 = |\langle \psi_1|(GU_f)^k|\psi\rangle\rangle|^2$$
$$= \sin^2((2k+1)\theta).$$

Now we choose k optimally, that is $(2k+1)\theta = \pi/2$, so set $k := \lceil \pi/(4\theta) - 1/2 \rceil$ but $\theta = \arcsin(\sqrt{1/N}) \ge \sqrt{1/N}$, so $k \le \lceil (\pi/4)\sqrt{N} \rceil$. If $k = \pi/(4\theta) - 1/2$, the probability of measuring $|x^*\rangle$ is 1, with the extra ceiling, can check that the probability is at least $1 - 1/N \approx 1$ for N large. Comment: see Lecture 3 here for details

The number of queries used is about $(\pi/4)\sqrt{N}$.

Remark 7. The algorithm can be extended to work when the number of marked elements is unknown, using techniques like fixed-point amplitude amplification: see [Yoder, Low, and Chuang].

Grover's algorithm is optimal in the query model We follow the BBBV97 argument. Comment: give some intuition For $t \in \{1, ..., T\}$, let

$$|\psi_i\rangle = \sum_{x,b,w} \alpha_{x,b,w}^t |x,b,w\rangle \tag{125}$$

denote the state of the algorithm just after U_i when run on $f: \{0,1\}^n \to \{0,1\}$ such that f(x) = 0 for all $x \in \{0,1\}^n$.

For $x \in \{0,1\}^n$ and $t \in \{1,...,T\}$, let

$$w_x^t \coloneqq \sum_{b,w} |\alpha_{x,b,z}^t|^2. \tag{126}$$

For $x \in \{0,1\}^n$, define the query weight (or magnitude) on x as

$$w_x := \sum_{t=1}^T w_x^t = \sum_{i=1}^T \sum_{b,z} |\alpha_{x,b,z}|^2; \tag{127}$$

Observe that

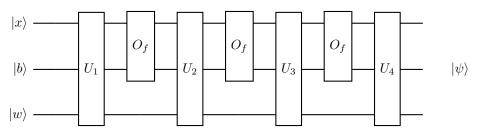
$$\sum_{x} w_x = T. \tag{128}$$

So there must exists x^* such that $w_{x^*} \leq T/N$.

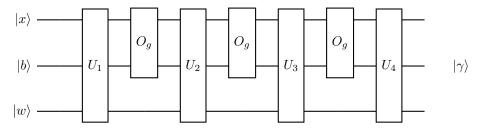
Let $q: \{0,1\}^n \to \{0,1\}$ be the function such that $q(x^*) = 1$ and q(x) = 0 for all $x \neq x^*$.

Example when T=3. (The number T counts the number of queries to f.)

Let the output of this circuit be $|\psi\rangle$.



Let the output of this circuit be $|\gamma\rangle$.



Note that the circuit producing $|\psi\rangle$ and $|\gamma\rangle$ have the same U_i 's and only differ in $O_f\leftrightarrow O_g$. This models the fact that the algorithm can only access f or g through queries.

Claim 1.
$$\| |\psi\rangle - |\gamma\rangle \| \le 2 \sum_{t=1}^{T} \sqrt{w_{x^*}^t}$$

Proof. Proof uses the hybrid argument.