Lecture 22

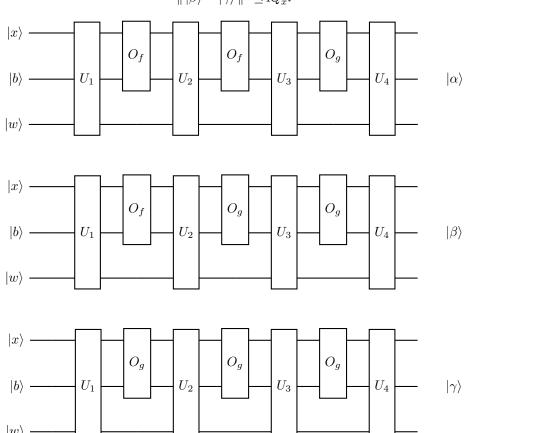
Claim 2. $\|\ket{\psi} - \ket{\gamma}\| \le 2\sum_{t=1}^T \sqrt{Q_{x^*}^t}$

Proof. By direct calculation (did in class), we have

$$\| |\psi\rangle - |\alpha\rangle \|^2 \le 4Q_{x^*}^3 \tag{129}$$

$$\| |\alpha\rangle - |\beta\rangle \|^2 \le 4Q_{x^*}^2 \tag{130}$$

$$\| \left| \beta \right\rangle - \left| \gamma \right\rangle \|^2 \le 4Q_{x^*}^1 \tag{131}$$



Therefore,

$$\| |\psi\rangle - |\gamma\rangle \| \le 2 \sum_{t=1}^{T} \sqrt{Q_{x^*}^t} \le 2\sqrt{T} \sqrt{\sum_{t=1}^{T} Q_{x^*}^t} \le 2 \frac{T}{\sqrt{N}},$$
 (132)

which is small unless $T \geq \Omega(\sqrt{N})$.

Quantum error correction Comment: Discuss classical and quantum error correction briefly, then classical bit flip code and Hamming code.

No cloning makes QEC non-trivial. No unitary that maps $|\psi\rangle|0\rangle|0\rangle$ to $|\psi\rangle|\psi\rangle|\psi\rangle$ for all $|\psi\rangle$. Note it is possible if the possibilities for $|\psi\rangle$ are restricted, e.g., $|\psi\rangle \in \{|0\rangle, |1\rangle\}$.

Definition 21. A d-dimensional observable O is a $d \times d$ Hermitian matrix, i.e., $O^{\dagger} = O$. An n-qubit observable is a 2^n -dimensional observable

Definition 22. Let O be an n-qubit observable and $|\psi\rangle$ and n-qubit quantum state. Suppose $O|\psi\rangle = \lambda |\psi\rangle$ for some real λ , then measuring O on $|\psi\rangle$ is a process that returns λ with certainty and the state remains $|\psi\rangle$.

Example 3. Measure Z on $|0\rangle$. Measure X on $|+\rangle$

Remark 8. (Non-examinable.) Can also define measuring O on non-eigenstates $|\psi\rangle$. Write $O = \sum_k \lambda_k \Pi_k$, where λ_k are the distinct eigenvalues of k and Π_k are the orthogonal projectors onto the corresponding eigenspace. Then measuring $|\psi\rangle$ returns λ_k with probability $\langle \psi | \Pi_k | \psi \rangle = ||\Pi_k | \psi \rangle||^2$ and the state collapses to $\Pi_k |\psi\rangle / ||\Pi_k |\psi\rangle||$. Consistent with our usual measurement notion: measure $Z \otimes I \otimes \cdots \otimes I$, then ..., then $I \otimes \cdots \otimes I \otimes Z$. (Technically, under relabelling $0 \mapsto 1$ and $1 \mapsto -1$.) Also consistent with definition above, which covers the special case when $|\psi\rangle$ is an eigenstate.

For this course, if O is measured on a non-eigenstate, treat it as "FAIL" (something bad happens). Will discuss how to implement measurement as a circuit later later.

Definition 23. An *n*-qubit stabilizer (Pauli operator) is a $2^n \times 2^n$ matrix of the form

$$P_1 \otimes P_2 \otimes \cdots \otimes P_n,$$
 (133)

where $k \in \{0, 1, 2, 3\}$ and P_i s are one of

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{134}$$

Comment: Easy to see these are Hermitian.