
Lecture 3

Leftover comment from last time: highlight some important keywords to be familiar with

1. two-qubit gate, (as opposed to one-qubit gate, two-qubit gate count is the more important metric),

2. two-qubit gate error, f : this is the probability of failure when one two-qubit gate is applied; conversion to number of
gates that can be performed 1/f . Comment: then did probability calculation.

3. physical qubits, or just qubits = number of “elementary quantum units” (electrons/photons/superconducting circuits)

4. logical qubits: conversion is number of logical qubits = number of physical qubits times 100− 1000. (The factor arises
from a concept of error correction, that we’ll discuss towards the end of this course.)

Power of randomized computation. Quantum computation can be seen as a generalization of randomized computation
(complex generalizes non-negative numbers.) It is important to distinguish between when a problem’s speedup is due to
randomness vs due to quantumness. Can do interesting things with randomness alone.

Consider the following two problems:

1. Given a string of n bits that’s either all zeros or half zero and half one but you don’t know where they’re placed: decide
which is the case. Deterministic Ω(n) in the worst case (with respect to the worst-case input). Randomized O(1) (for
very high probability of success). Comment: then did the randomized analysis. Comment: there was a question about
whether this is an “apples-to-apples” comparison. I answered that you can also get separations in a fully apples-to-
apples case. This is the wrong answer, sorry. (I was thinking about “Las Vegas” algorithms: while they are always
correct, their runtime bound is only “in expectation”, so the complexity comparison there with deterministic classical is
also not apples-to-apples.) In fact, the answer for a *fully* apples-to-apples comparison is “no, randomized algorithms
cannot be faster if you demand both *always* correct and and a runtime bound that *always* holds”. Interestingly, it
is true that “quantum algorithms *can* be faster even if you demand both *always* correct and and a runtime bound
that *always* holds” – in fact, a relatively simple one that we’ll see: Deutsch-Jozsa.

2. NAND tree on n := 2h variables. Randomized: consider the following recursively-defined randomized algorithm Ah:
choose the left or right branch uniformly at random. Then compute the value of that branch using Ah−1. If get 0, just
outputs 1 — this will give the correct answer by the truth-table of NAND. If get 1, also compute the value of the other
remaining branch using Ah−1. Comment: Ah is computing the NAND tree on 2h variables.

For b ∈ {0, 1}, let αb(h) denote the algorithm’s expected complexity (expectation is over the randomness of the algorithm

not the input, the input is assumed to be worst-case) when run on inputs x ∈ {0, 1}2h

that map to b. Then,

α0(h) ≤ 2α1(h− 1), (6)

α1(h) ≤ 1

2
(α1(h− 1) + α0(h− 1)) +

1

2
α0(h− 1) ≤ α0(h− 1) + α1(h− 1)/2; (7)

which solves to (
(1 +

√
33)/4

)h
= O(n0.754). (8)

In fact this is the optimal randomized complexity – see Saks and Wigderson ’86. Deterministic: can show it’s Ω(n).
It turns out that the answer is Θ(

√
n) for quantum. So this is an interesting problem with a “three-way” complexity

separation between deterministic, randomized, and quantum.

6

https://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/SW86/SW86.pdf

