Lecture 7

Quiz: Commutativity? That is, is it true that $A \otimes B = B \otimes A$ for all A, B?

Appendum to last time:

1. The following observation may also be useful for HW1, Q3. Suppose $A \in \mathbb{C}^{d \times d}$, then

$$A|i\rangle = \sum_{j=1}^{d} A_{j,i} |j\rangle \tag{34}$$

for all $i \in \{1, ..., d\}$.

2. A d dimensional quantum state is a length d column vector $\sum_{i} \alpha_{i} |i\rangle$ such that $\alpha_{i} \in \mathbb{C}$ and $\sum_{i=1}^{d} |\alpha_{i}|^{2} = 1$. An n-qubit quantum state is 2^{n} -dimensional.

Example of a unitary matrix

$$\begin{pmatrix} i/2 & -i\sqrt{3}/2\\ \sqrt{3}/2 & 1/2 \end{pmatrix} \tag{35}$$

If U is a unitary matrix, then $UU^{\dagger} = I$ also. (Proof: $U^{\dagger}U = I$ and U square means U is invertible so right multiplying by U^{-1} gives $U^{\dagger} = U^{-1}$ then left multiplying by U gives $UU^{\dagger} = I$.)

Definition 7 (Quantum operation). A quantum operation acting on n qubits is described by a 2^n by 2^n unitary matrix.

Common elementary quantum gates:

$$H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
 Hadamard gate (36)

$$X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $X \text{ gate}$ (37)

$$Y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
 Y gate (38)

$$Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $Z \text{ gate}$ (39)

$$T := \begin{pmatrix} 1 & 0 \\ 0 & \exp(i\pi/4) \end{pmatrix}$$
 $T \text{ gate}$ (40)

$$CNOT := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 controlled-NOT gate (41)

Toffoli := the same 8×8 matrix as before

A more convenient linear-algebraic definition of CNOT and Toffoli:

CNOT:
$$|a\rangle |b\rangle = |a\rangle |b \oplus a\rangle$$
,

and

Toffoli:
$$|a\rangle |b\rangle |c\rangle = |a\rangle |b\rangle |c \oplus (a \wedge b)\rangle$$
.

Definition 8 (Quantum circuit). A quantum circuit is a sequence of quantum operations (typically elementary quantum gates from above).

Consider the following circuits:

Comment: the above circuit defines a matrix but often only care about how it acts on a fixed input, say, $|0\rangle$.

Definition 9 (Measurement). Measuring an *n*-qubit quantum state (in the computational basis) $|\psi\rangle = \sum_{x\in\{0,1\}^n} \alpha_x |x\rangle$ refers to a process that returns x with probability $|\alpha_x|^2$.

In a circuit diagram, such measurement often denoted

Then we computed the output distribution of:

