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Abstract

This paper surveys the current progress on the Hidden Subgroup Problem (HSP), a funda-
mental question in quantum computing. The work begins by exploring the Quantum Fourier
Transform (QFT) and its role in solving the HSP. It then discusses both classical and quantum
approaches for solving the HSP, with a focus on the Abelian HSP. Several problems, such as
Simon’s Problem, the Period Finding Problem, the Discrete Logarithm Problem (DLP), and
its elliptic curve variant (ECDLP), are shown to reduce to the HSP. These reductions provide
the foundation for quantum algorithms, such as Shor’s algorithm, to break encryption protocols
like RSA, Diffie-Hellman, and Elliptic Curve Diffie-Hellman. Finally, the paper briefly discusses
solving specific cases of the HSP on the Dihedral Group.

1 Introduction

The Hidden Subgroup Problem (HSP) is a fundamental problem in quantum computing, underpin-
ning many significant quantum algorithms. Its importance lies in its ability to model computational
problems that are hard to solve with conventional classical computer but quantumly efficient. The
HSP generalizes problems such as Simon’s Problem and the Period Finding Problem. These re-
ductions have profound implications for cryptography, as they enable quantum attacks on some
protocols like RSA, Diffie-Hellman, and elliptic curve cryptography.

In Section 2, we introduce the Quantum Fourier Transform (QFT) and explore its key appli-
cations, particularly its pivotal role in quantum algorithms. In Section 3, we review fundamental
definitions from group theory and present the well-known classical and quantum approaches for
solving the Abelian Hidden Subgroup Problem (HSP). In Section 4, we discuss several common
problems that can be reduced to the Abelian HSP, such as Simon’s Problem, Period Finding, the
Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP),
highlighting their implications for real-world applications, particularly in cryptographic protocols.
Finally, in Section 5, we briefly examine approaches for solving the HSP in the non-Abelian setting,
with an emphasis on the dihedral group.

2 The Quantum Fourier Transform

The Fourier Transform, classically used to analyze the frequency components of signals, is a cor-
nerstone of signal processing and data analysis. It turns out that the Discrete Fourier Transform
(DFT) can be implemented efficiently with a quantum circuit using the Quantum Fourier Trans-
form (QFT), which exponentially speeds up certain computational tasks. Furthermore, it serves as
the foundation for many applications in quantum computing, such as Shor’s algorithm for integer
factorization and phase estimation in quantum algorithms.
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Definition 2.1 (the quantum Fourier Transform). Given an orthonormal basis |0⟩ , |1⟩ , ..., |N − 1⟩
for some N ∈ N, the quantum Fourier Transform (QFT) is the unitary matrix Q such that ∀j ∈ [N ],

Q |j⟩ = 1√
N

N−1∑
k=0

e2πijk/N |k⟩ . (1)

Below, we present one application of the QFT.

2.1 Phase Estimation

Phase Estimation is an elementary but important application of the quantum Fourier Transform.
Given a unitary matrix U with eigenvector |u⟩, the algorithm seeks to find the eigenvalue e2πiψ

of |u⟩. Note that it is well known that eigenvalues of unitary matrices have norm 1, thus any
eigenvalue v ∈ C of U is expressible as e2πiψv for some ψv ∈ [0, 1).

The idea of the algorithm is to exploit the properties of eigenvalues to construct the post Fourier
transformation of a particular basis vector, then perform the inverse Fourier transform (which we
know exist since the QFT is invertible as an unitary operation).

Consider first applying a Hadamard gate to |0⟩ then performing a controlled-U operation from
this bit to |u⟩. Then

|0⟩ |u⟩ H−→ (|0⟩+ |1⟩)√
2

|u⟩ = (|0⟩ |u⟩+ |1⟩ |u⟩)√
2

controlled−U−−−−−−−−→ (|0⟩ |u⟩+ |1⟩U |u⟩)√
2

=
(|0⟩ |u⟩+ e2πiψ |1⟩ |u⟩)√

2
=

(|0⟩+ e2πiψ |1⟩)√
2

|u⟩ .

In particular, we note that applying controlled-U does not transform |u⟩, allowing us to reuse |u⟩
throughout our procedure. By reproducing this sequence with U2j for j ∈ [n], we get

(|0⟩+ e2πijψ |1⟩)√
2

|u⟩ .

By aggregating the result of this sequence for all j ∈ [n], we obtain (excluding the |u⟩ register which
stays constant)

(
(|0⟩+ e2πi2

n−1ψ |1⟩)√
2

)(
(|0⟩+ e2πi2

n−2ψ |1⟩)√
2

)...(
(|0⟩+ e2πi2

0ψ |1⟩)√
2

) (2)

=
1

2n/2

2n−1∑
k=0

e2πikψ |k⟩

To see the last equality, notice when we distribute the products in Eq. (2), the jth term multiplied
yields |0⟩ or e2πj2

jψ. We notice this is precisely the quantum Fourier Transform of |j⟩ such that
j/2n = ψ. So we can simply invert the transformation, measure to obtain j, and infer ψ. Notice
however since j ∈ [n], there only exist a finite number of ψ that we can infer. Namely, given a fixed
n, we do not have arbitrary precision on ψ.

3 The Hidden Subgroup Problem

The hidden subgroup problem generalizes many computational problems, such as factoring, discrete
logarithm, and graph isomorphism, into a unified framework in the context of group theory. Before
stating the statement of the problem, we need some notation and definitions.
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3.1 Preliminaries

Definition 3.1 (Abstract Group). A group is an ordered pair (G, ∗) where G is a set and ∗ :
G×G→ G is a binary operation on G that satisfies the following:

1. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,

2. Identity: there exists an element e ∈ G such that g ∗ e = e ∗ g = g for all g ∈ G,

3. Inverse: for every g ∈ G, there exists is an element g−1 such that g ∗ g−1 = g−1 ∗ g = e.

We say (H, ∗) is a subgroup of (G, ∗) if H ⊆ G, and (H, ∗) is a group.

Note that an abstract group doesn’t have to be commutative, that is, for a, b ∈ G, we don’t
necessarily have a ∗ b = b ∗ a. When a ∗ b = b ∗ a for all a, b ∈ G, we say (G, ∗) is abelian.

Definition 3.2 (Coset). Let H be a subgroup of G, we define the left cosets of G with respect of
H as the sets gH = {gh, h ∈ H}, note that we could define right cosets in similar fashion

Definition 3.3 (Subgroup Generated by Set). Let G be a group, and let S ⊆ G be a subset of
G. The subgroup generated by S, denoted ⟨S⟩, is the smallest subgroup of G that contains all
elements of S.

If S = {g} contains only a single element, ⟨g⟩ is called the cyclic subgroup generated by g.

Definition 3.4 (Group Homomorphism). Let (G, ∗G), (H, ∗H) be groups, a map φ : G → H is
called a group homomorphism if φ(g1 ∗G g2) = φ(g1) ∗H φ(g2) for every g1, g2 ∈ G. When φ is
a bijection, we say φ is an isomorphism, and write G ∼= H.

For more information about groups, we refer to the textbook [DF03].
We will mainly focus on finite groups, that is, when |G| is finite.

Theorem 3.5 (Classification of Finite Abelian Group). Every finite abelian group is a direct
product of cyclic groups. That is,

G ∼= Zn1 × Zn2 × · · · × Znk
,

where each Zni is a cyclic group of order ni ∈ N.

We now present the general definition of the Hidden Subgroup Problem.

Definition 3.6 (The Hidden Subgroup Problem). A function f : G → X from a group G to a
finite set X is said to hide a subgroup H of G if f(x) = f(y) ⇔ x and y are in the same coset of
H, that is, x− y ∈ H. Given this function f , find a subset of H such that every element of H is a
finite product of elements from this set, i.e., find a generating subset of H.

The finite abelian hidden subgroup problem has been completely solved.
We conclude this section with a result that guarantees the correctness of the quantum algorithm.

Theorem 3.7. Let G be a finite group, and t ≥ 0 be an integer. Then the probability that t +
⌈log2 |G|⌉ uniformly random chosen elements from G generates the whole group with probability at
least 1− 1

2t .

For the proof of this theorem, we refer to [Pak].
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3.2 Classical Approach

The best known randomized approach achieves an expected query complexity of O(
√
n/m) where

n = |G| is the order of the group and m = |H| is the size of the hidden subgroup, with a worst case
complexity of O(

√
n) [YL22][Nay22].

In this subsection, we present the nonconstructive proof for a classical HSP algorithm by Nayak
[Nay22]. This approach relies on the idea that any finite abelian group G could be expressed as
the product of two subsets S1, S2 of G, or a generating pair, such that |S1|, |S2| ∈ O(

√
n). Indeed,

given such a decomposition, we have ∀h ∈ H ⊆ G, h = s1s2 such that s1 ∈ S1, s2 ∈ S2, so we can
simply query f at s−1

1 , ∀s1 ∈ S1 and all s2 ∈ S2. Then f(s−1
1 ) = f(s2) =⇒ h = s1s2 ∈ H. We

further notice that any h ∈ H ⊆ G has form s1s2 so we can construct H with the algorithm. Since
we are querying two sets of size O(

√
n), the algorithm yields a deterministic query complexity of

O(
√
n), matching the worst case query complexity of the randomized case.
For the non-abelian case, a similar algorithm is possible but is limited by how |S1|, |S2| can be

only shown to be ∈ O(
√
n log n). We demonstrate the proof here.

Proposition 3.8 (Generating Pair of Non-Abelian Groups [Nay22]). For any group G with order
n > 1, there is a generating pair S1, S2 for G such that |S1|, |S2| ≤ ⌈

√
n log n⌉.

Proof. Let t :=
√
n log n and fix any S1 = {g1, g2, ..., gt} ⊆ G. Let R be a set of t distinct group

elements chosen uniformly and randomly from the collection of subsets of G with size t. Consider
their product

S1R = {xy : x ∈ S1, y ∈ R}.

Now, fix an element g ∈ G. Then the probability that g ̸∈ S1R is

Pr[g ̸∈ S1R] = Pr[∀i ∈ [t], g−1
i g ̸∈ R]

=
for our fixed g,# of ways to make R without any of g−1

i g (t such elements)

all possible R

=

(
n−t
t

)(
n
t

) =

(n−t)!
(n−2t)!t!

n!
(n−t)!t!

=
(n− t)(n− t− 1)...(n− 2t+ 1)

n(n− 1)...(n− t+ 1)
=

t∏
k=0

n− t− k

n− k

=
t∏

k=0

(
1− t

n− k

)
since t > 1,

Pr[g ̸∈ S1R] <

(
1− t

n

)t
≤ e−

t2

n ≤ 1

n

with the second to last inequality due to 1−x ≤ e−x, and the last equality exploiting t =
√
n log n.

Thus,

Pr[G ̸= S1R] = Pr[G ̸⊆ S1R] = Pr[∃g ∈ G, g ̸∈ S1R] ≤
n∑
i=1

Pr[g ̸∈ S1R] < 1

by the union bound. Since this probability is strictly less than 1, there must exist some S2 with
t =

√
n log n elements such that S1S2 = G and we are done.

Thus, the same deterministic algorithm would give us query complexity O(
√
n log n).
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3.3 Quantum Approach

In this subsection, we present the quantum algorithm for solving the abelian hidden subgroup
problem. The following is discussion based on [CVD10], [Chi], and [Lom04].

Throughout this section, let G denote a finite abelian group, and H a subgroup of G hidden
by a function f : G→ X. By the structure theorem of finite abelian group, G can be expressed as
G ∼= Zn1 ×Zn2 ×· · ·×Znk

for some k ∈ N, where ni ≥ 2, ni ∈ N. Elements of G can be represented
as a k-tuple g = (g1, g2, . . . , gk) ∈ G, where each gi ∈ Zni .

If we examine the algorithm for finding hidden subgroup Zr in Zn, the quantum procedure
samples elements from the quotient group Zn/Zr, and by computing the greatest common divisor
of these coset representatives, we can find the unknown r with high probability.

The approach generalized to finite abelian groups. By generating sufficiently many group ele-
ments, the hidden subgroup can be reconstructed from this data. In the cyclic case, the elements
generated are multiples of the subgroup generator (which corresponds to a subgroup of Zn isomor-
phic to Zn/Zr), and this can be generalized to a subgroup of G isomorphic to G/H.

To generalize the Quantum Fourier Transform to all finite abelian groups, we need group rep-
resentation theory.

Definition 3.9 (Character). For any g, h ∈ G, define χg to be a map from G to C∗ (the set of
nonzero complex numbers) via

χg(h) =
k∏
i=1

e
2πi
ni
gihi .

One can check that the map χg is a group homomorphism.
For more details on the theory of characters, we refer to the textbook [Lan02].

Definition 3.10 (QFT over a Finite Abelian Group). The Quantum Fourier Transform over G is
the unitary matrix

QFTG :=

k⊗
i=1

QFTni
,

where QFTni
is the cyclic Quantum Fourier Transform.

This Quantum Fourier Transform is essentially taking the Fourier Transform over each cyclic
component of the abelian group. Assuming that the matrix is indexed by the group elements, with
g = (g1, g2, . . . , gk), one can verify the following identity:

QFTG =
1√
|G|

∑
g,h∈G

χg(h)|g⟩⟨h|.

Definition 3.11 (Orthogonal Subgroup). For any subgroup H of G, define the orthogonal subgroup

H⊥ = {g ∈ G : χg(h) = 1 ∀h ∈ H}.

One can check that this is a subgroup ofG isomorphic toG/H, and the correspondenceH → H⊥

is one-to-one, with inverse given by (H⊥)⊥ = H.
For each subset S of G, denote

|S⟩ := 1√
|S|

∑
s∈S

|s⟩ .

The following theorem shows the relation between the Quantum Fourier Transform and the orthog-
noal subgroup.
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Theorem 3.12.
QFTG |H⟩ = |H⊥⟩ .

Definition 3.13. For t ∈ G, the translation τt and phase-change operators are defined by

τt =
∑
g∈G

|t+ g⟩⟨g|, ϕt =
∑
g∈G

χt(g)|g⟩⟨g|.

The following lemma shows why the Quantum Fourier Transform is useful for our purpose, and
one can verify it by a direct computation.

Lemma 3.14. For all t ∈ G,
QFTG τt = ϕtQFTG .

We now present the algorithm. First, consider the follow quantum procedure that randomly
samples an element of H⊥.

1. Create the uniform superposition state over all the group elements,

|G⟩ = 1√
|G|

∑
g∈G

|g⟩ |0⟩ .

2. Using one quantum query to create

1√
|G|

∑
g∈G

|g⟩ |f(g)⟩ .

3. Measuring and then discarding the second register gives the state

|g +H⟩ = 1√
H

∑
h∈H

|g + h⟩ = τg |H⟩ ,

for some g ∈ G chosen uniformly at random.

4. Apply QFTG to the previous state, and by the previous theorem, we get

QFTG τg |H⟩ = ϕtQFTG |H⟩ = ϕt |H⊥⟩ .

5. Since the phase-change operator has no effect on the norm, measuring the state in the com-
putational basis produces an element of H⊥ chosen uniformly at random.

As a consequence of theorem 3.7, by running the above procedure ⌈log2 |G|⌉+ t times, we can find a
generating set of H⊥ with probability at least 1− 1

2t . The final step of the algorithm is to efficiently
find a generating set of H from this generating set of H⊥, and this can be done classically.

Let N = ⌈log2 |G|⌉+ t, and S = {g(1), g(2), . . . , g(N)} be a set of random elements of H⊥ chosen
using the above procedure, and let d = lcm(n1, n2, . . . , nk), so we can write mj = d/nj . For each
element h ∈ H, we have

χg(l)(h) =

k∏
j=1

exp

(
2πi

nj
g
(l)
j hj

)
=

k∏
j=1

exp

(
2πimj

d
g
(l)
j hj

)
= exp

2πi

d

k∑
j=1

mjg
(l)
j hj

 = 1,
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which is equivalent to
k∑
j=1

mjg
(l)
j hj ≡ 0 (mod d).

By the correspondence between H and H⊥, we have the following characterization for H:

∀g ∈ G, g ∈ H ⇔ ∀s ∈ H⊥, χs(g) = 1.

If ⟨S⟩ = H⊥, then every element of H⊥ is a finite sum of element from S, and χs(g) = χg(s) is a
group homomorphism, so we can rewrite the characterization as

∀g ∈ G, g ∈ H ⇔ ∀s ∈ S, χs(g) = 1.

The above discussion shows that an element (x1 (mod n1), x2 (mod n2), . . . , xk (mod nk)) of G is
in H if and only if it’s a solution to the following system of linear equations, and each solution
corresponds to exactly one element of H:

m1g
(1)
1 x1 +m2g

(1)
2 x2+ · · ·+mkg

(1)
k xk ≡ 0 (mod d)

m1g
(2)
1 x1 +m2g

(2)
2 x2+ · · ·+mkg

(2)
k xk ≡ 0 (mod d)

...

m1g
(N)
1 x1 +m2g

(N)
2 x2+ · · ·+mkg

(N)
k xk ≡ 0 (mod d).

It suffices now to randomly generate solutions to the above system to randomly sample elements
from H. This process can be done efficiently using Smith normal form. For the theory on Smith
normal form of matrices with entries in a principal ideal domain (Zd in this case), we refer to
chapter 3 of the textbook [Jac09].

Let A be the coefficient matrix of the above system, then A has Smith normal form A = UDV
where U,D, V are matrices with entries in Zd, with U, V being invertible N × N, k × k matrices,
and D a diagonal N × k matrix. The matrices U,D, V can be computed efficiently from A, and we
refer to the article [Sto96].

A random solution to the equation Dy = 0 for y = (y1, y2, . . . , yk) can be generated by solving
congruences for each entry. Let x = V −1y, then we have Ax = UDV x = UDV V −1y = 0,
so x is a solution to the above system chosen uniformly at random. Now repeating the process
N = ⌈log(|G|)⌉+t times would produceN elements ofH chosen uniformly at random. Therefore the
two procedures together produces a generating set for H with probability at least

(
1− 1

2t

) (
1− 1

2t

)
,

which can be made arbitrarily small by choosing t to be a large constant.
Overall the algorithm runs polynomial time in log(|G|), with O(log(|G|)) oracle calls.

4 Application of Hidden Subgroup Problem

4.1 Simon’s Problem

Definition 4.1 (Simon’s Problem). Let f : Fn2 → X be a function, where X is an arbitrary set,
such that:

f(x) = f(y) ⇐⇒ x⊕ y = s,

where s ∈ Fn2 is a fixed, unknown bitstring with s ̸= 0n.
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The goal of Simon’s Problem is to determine the hidden bitstring s using the smallest number
of queries to f .

Theorem 4.2. Simon’s problem is a special case of the Hidden Subgroup Problem with G = {Fn2 ,⊕},
i.e., G is a group of binary strings under the XOR operation. We need to find the hidden subgroup
H = ⟨s⟩

4.2 Period Finding Problem

Definition 4.3 (Period Finding Problem). Let f : Z → X be a function, where X is a set, and
f(x) is periodic. That is, there exists a smallest positive integer r (called the period of f) such
that:

f(x) = f(x+ r) for all x ∈ Z.

The goal of Period Finding Problem is to find the smallest integer r that satisfies above condition

Theorem 4.4. The Period Finding Problem is a special case of the Hidden Subgroup Problem with
G = {Z,+}. The goal is to find the smallest r that generates the hidden subgroup H = ⟨r⟩, where
r corresponds to the period of the function f(x).

Definition 4.5 (Order Finding Problem). Let a and N be positive integers such that gcd(a,N) = 1.
The goal of the Order Finding Problem is to find the smallest positive integer r such that ar ≡ 1
mod N .

Theorem 4.6. Order Finding Problem is a special case of Period Finding Problem where

f(x) = ax mod N

Proof. By the definition of the order, r is the smallest positive integer such that:

ar ≡ 1 mod N.

we have:
f(x+ r) = ax+r mod N.

Using the properties of exponents, we write:

ax+r = ax · ar.

Since ar ≡ 1 mod N , it follows that:

ax+r ≡ ax · 1 ≡ ax mod N.

Therefore:
f(x+ r) = f(x).

Therefore, since r is the smallest positive integer such that ar ≡ 1 mod N , it is the smallest period
of f(x). Thus, the Order Finding Problem, which involves finding r, is a special case of the Period
Finding Problem.

Order Finding problem is an important element in Shor’s Factoring Algorithm
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4.3 Discrete Logarithm Problem

Definition 4.7. (Discrete Logarithm Problem) Let G = ⟨g⟩ be a cyclic group generated by g Given
an element x ∈ G, the discrete logarithm of x in G with respect to g, denoted as logg x, is the
smallest non-negative integer α such that gα = x. The discrete logarithm problem is the problem of
calculating logg x. [Chi]

Theorem 4.8. Let f : ZN × ZN → G such that

f(a, b) = xagb = ga logg xgb = ga logg x+b.

We can see that the function f hide

H = ⟨(1,− logg x)⟩

Proof. let n ∈ ZN , then

f(a, b) = ga logg x+b = ga logg x+bgn logg x−n logg x = g(n+a) logg x+(b−n logg x) = f(a+ n, b− n logg x)

therefore ∀c ∈ ZN × ZN ,∀r ∈ H, f(c) = f(c+ r). Let s ∈ (ZN × ZN ) \H, then s = (α,−β logg x)
for some α, β ∈ ZN and α ̸= β, thus

f(c+ s) = ga logg x+bg(α−β) logg x

Since α ̸= β, therefore g(α−β) logg x ̸= 1, it follows that

f(c+ s) ̸= f(c)

Thus
f(c+ r) = f(c) ⇐⇒ r ∈ H

as required. Finding the generator of S

Finding the generator of H will give us −loggx which correspond to the solution of Discrete
Logarithm Problem

Definition 4.9. (Diffie-Hellman Key Exchange) Diffie-Hellman Key Exchange is a cryptographic
protocol that allowed two parties, typically referred as Alice and Bob, to share secret keys over an
insecure channel. Let G be a cylic group with prime order p and generator g:

• Alice has a private key a ∈ Zp and compute a public key A = ga

• Bob has a private key b ∈ Zp and compute a public key B = gb

• Alice and Bob can exchange their public key A and B

• Both can compute shared secret key s = gab. In which Alice calculate Ab and Bob compute
Ba

The Diffie-Hellman key exchange protocol relies on the computational hardness of the Discrete
Logarithm Problem, as breaking the protocol requires solving this problem..
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4.4 Elliptic Curves

Definition 4.10. (Elliptic Curves) Let F is a field and a, b ∈ F, the elliptic curve Ea,b is defined
as the set points (x, y) ∈ F2 satisfying the equation

y2 = x3 + ax+ b

and
4a3 + 27b2 ̸= 0

as well as special an infinity point O. [Chi]

Theorem 4.11. (Elliptic Curves as abelian group) Let Ea,b = {(x, y) ∈ F2, y2 = x3+ax+b}∪{O}
be an Elliptic Curves, then Ea,b together with an operation ”+” defined below, form an abelian
group.

1. Identity Element (O):
for any point P ∈ Ea,b, O + P = P +O = P

2. Inverse of a Point:
for any element P = (x, y) ∈ Ea,b we define the inverse −P = (x,−y) and P + (−P ) = O

3. Point Addition:
for any two distinct points P = (xP , yp), Q = (xQ, yQ) ∈ Ea,b and P ̸= −Q, we define the
slope of the two point as

λ =
yQ − yP
xQ − xP

then we define
P +Q = (λ2 − xP − xQ, λ(xP − xP+Q)− yP )

4. Point Doubling:
for any points P = (x, y) ∈ F then the slope of λ is the tangent point to the curve at P .

λ =
3x2 + a

2y

then we define
2P = (λ2 − 2x, λ(xP − x2P )− yP )

Definition 4.12. (Elliptic Curve Diffie-Hellman) Suppose we have an agreed upon Elliptic Curve
Ea,b, then we choose an agreed upon point g ∈ Ea,b, suppose n is the order of g, i.e. ng = O. Then
each party(denote as Alice and Bob) can generate a private key and public key:

• Alice generate private key a ∈ ZN and public key A = ag

• Bob generate private key b ∈ ZN and public key B = bg

Then both Alice and Bob could generate a secret key S = abg, Alice calculating aB and Bob by
calculating bA

Elliptic Curve Diffie-Hellman assumes that finding the secret keys a and b is computationally
hard. This is analogous to solving the Discrete Logarithm Problem. As shown in Theorem 4.8, the
Discrete Logarithm Problem can be reduced to the Hidden Subgroup Problem. Therefore, Shor’s
algorithm can be used to efficiently find a and b.
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5 Non-Abelian Case

Unlike the general Abelian Case, HSP on only certain of Non-Abelian HSP have been explored. We
present some developments for HSP on the Dihedral Group, which describe all shape preserving
symmetries of the n-gon.

Definition 5.1 (Dihedral Group). The dihedral group of order 2N is a semidirect product of two
cyclic groups ZN , Z2 of order N and 2 respectively. It is isomorphic to the group

DN = ZN ⋊ϕ Z2

with multiplication defined by

(a1, b1)(a2, b2) = (a1 + ϕ(b1)(a2), b1 + b2),

where ϕ is a homomorphism defined by

ϕ : Z2 → Aut(Zn) such that ϕ(0)(a) = a, ϕ(1)(a) = −a

We note that the subgroups of the Dihedral Group could only have form ZK × {0}, {0} × {1},
or DM for K,M ∈ N ∪ {0}. One core result of HSP on the Dihedral Group is an algorithm to
obtain a generating set of the hidden subgroup with query complexity Θ(logN). First, we present
a fact.

Fact 5.2. Let γ : DN → R be a function with a hidden subgroup H where H is either trivial or
H = {(0, 0), (k0, 1)} for some 0 ≤ k0 ≤ N . Then there is a quantum algorithm using at most
89 log(N) + 7 queries that decides which case we are in and outputs k0 if we are in case 2 with
probability at least 1− 1

2N . [EH99]

Now, we demonstrate the main theorem of the Dihedral HSP. The technique used in the algo-
rithm exploits the abelian property of the cyclic ZN and Z2 finite groups.

Theorem 5.3 (Dihedral HSP Query Complexity [EH99]). Let γ : DN → R be a function that hides
the subgroup H. Then there exists an algorithm that uses Θ(logN) evaluations of γ and outputs a
subset X ⊆ DN such that X is a generating set for H with probability ≥ 1− 2

N .

Proof. First, we consider our function γ constrained on the group ZN ×{0} ≤ DN of order N . We
also define H1 = H ∩ (ZN × {0}). Since H1 ⊆ H, γ, and thus γ1, is constant on the cosets of H1.
In other words, γ1 hides the subgroup H1 so we have an abelian HSP question (indeed Zn × {0} is
abelian since it is isomorphic to Zn).

So we apply results from Section 3. to obtain a generating set for H1 in Θ(logN) evaluations
of γ with probability 1− 1

|ZN×{0}| = 1− 1
N . To generate H1 efficiently, we note that we can employ

the period finding algorithm [Chi] since H1 is cyclic as a subgroup of the cyclic group ZN ×{0} and
achieve arbitrary precision. Since we are only concerned with query complexity, we can alternatively
generate H1 with the brute force approach as well.

Now, we note that H1 = ZK × {0} for some K ∈ N is normal subgroup. To show this, suppose
g ∈ DN = (a1, b1) and let (α, 0) ∈ H1. Then

(a1, b1)(α, 0)((a1, b1))
−1

=(a1 + α, b1)((a1, b1))
−1

=(α+ a1, b1)((a1, b1))
−1 → (Zn abelian)

=(α, 0)(a1, b1)((a1, b1))
−1

=(α, 0) ∈ H1

11



Since H1 is normal, the quotient group DN/H1 is well defined. Note also that as a subgroup of
ZN × {0}, H1 must have cyclic form {0,M, 2M, ..., kM} × {0} such that M |N , for 1 ≤ M ≤ N ,
k ∈ N. Now, we notice thatDN/H1 is isomorphic toDM . To show this, consider the homomorphism
ψ : DN → DM defined by

(a, b) → (a (mod M), b).

We check that it is a homomorphism.

ψ((a1, b1) + (a2, b2)) =(a1 + ϕ(b1)(a2) (mod M), b1 + b2)

=(a1 (mod M) + ϕ(b1)(a2) (mod M), b1 + b2)

Case 1: b1 = 0 → ϕ(b1)(a) = a

ψ((a1, b1) + (a2, b2)) =(a1 + ϕ(b1)(a2) (mod M), b1 + b2)

=(a1 (mod M) + a2 (mod M), b1 + b2)

=(a1 (mod M) + ϕ(b1)(a2 (mod M)), b1 + b2)

=ψ((a1, b1)) + ψ((a2, b2))

Case 2: b1 = 1 → ϕ(b1)(a) = −a

ψ((a1, b1) + (a2, b2)) =(a1 + ϕ(b1)(a2) (mod M), b1 + b2)

=(a1 (mod M)− a2 (mod M), b1 + b2)

=(a1 (mod M) + ϕ(b1)(a2 (mod M)), b1 + b2)

=ψ((a1, b1)) + ψ((a2, b2))

Now, the kernel of ψ is precisely the elements (a, b) ∈ DN such that M | a and b = 0, which is
exactly the elements of H1. So we invoke the fundamental theorem of homomorphisms [DF03] to
obtain that the quotient group DN/H1 is isomorphic to Image(ψ) = DM .

Recall γ is constant on the cosets of H1, so we can see γ as a function γ2 : DM → R defined via
gH1 7→ γ(g) composed with the isomorphism from DM to DN/H1. This is again a function that is
constant on some hidden subgroup H2. We claim that there are only two possible choices for H2,
the identity subgroup or a subgroup of order 2. We consider the second component of elements of
H. If the second component of H is the identity, then we must have H ∼= H1, and in this case, H1

collapse to the identity in DM
∼= DN/H1. Otherwise, H has to be isomorphic to a dihedral group

with H1 being the maximal cyclic subgroup, so |H| = 2|H1|, and therefore H is the union of two
cosets of H1 in DN/H1, which corresponds to a subgroup of order 2 in DM .

Thus, if we indeed obtain H1, we repeat the algorithm in Fact 5.2 ⌈log(2N)/ log(2M)⌉ =
⌈log2M (2N)⌉ times. This allows us to find k0 with probability at least 1− 1

(2M)t ≥ 1− 1
2N . Let X1

be the generating set obtained for H1. Then suppose we obtain k0, we output X = X1 ∪ {(k0, 1)}.
Otherwise, we output X = X1.

Note that X generates H if X1 generates H1 and if we find h0. Thus, the probability of success
is given by

Pr[success] ≥ (1− 1

N
)(1− 1

2N
) = 1 +

1

2N
+

1

2N2
> 1− 2

N

and total number of queries of γ is Θ(logN) + t(89 logM + 7) = Θ(logN) as required.
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